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Abstract 

In these lectures I review the standard hot big-bang cosmology, emphasizing 
its successes, its shortcomings, and its major challenge-a detailed under- 
standing of the formation of structure in the Universe. I then discuss the 
motivations for-and the fundamentals of-in5ationary cosmology, particu- 
larly emphasizing the quantum origin of metric (density and gravity-wave) 
perturbations. Inflation addresses the shortcomings of the standard cosmol- 
ogy and provides the “initial data” for structure formation. I conclude by 
addressing the implications of inflation for structure formation, evaluating 
the various cold dark matter models in the light of the recent detection of 
temperature anisotropies in the cosmic background radiation by COBE. In 
the near term. the study of structure formation offers a powerful probe of 
inflation, as well as specific inflationary models. 

1 Hot Big Bang: Successes and Challenges 

1.1 Successes 

The hot big-bang model, more properly the Friedmann-Robertson-Walker (FRW) 
cosmology or standard cosmology, is spectacularly successful: In short, it provides a 
reliable and tested accounting of the history of the Universe from about 0.01 set after 
the bang until today, some 15 billion years later. The primary pieces of evidence that 
support the model are: ( I ) The expansion of the Universe: (2) The cosmic background 
radiation: and (3) The primordial abundances of the light elements D, ‘He, ‘He, and 
rLi [I]. 

‘Summsrv of lectures given at TASI-92 (Boulder. CO. June 1992). Cargese Summer School on 
Quantitative Particle Physics (Cargese. Corsica, July 1992). and Varenna Summer School on Gais.xy 
Formation (Varenna, Italy. July 1992). 
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Figure 1: Hubble diagram (from [3]). The deviation from a linear relationship around 
40 Mpc is due to peculiar velocities. 

1.1.1 The cxpanaion 

Although the precise value of the Hubble constant is not known to better than a 
factor of two, Ho = IOOh kmsec-l Mpc-’ with h = 0.4 - I. there is little doubt that 
the expansion obeys the “Hubble law” out to red shifts approaching unity [2. 31; see 
Fig. 1. As is well appreciated, the fundamental difficulty in determining the Hubble 
constant is the calibration of the cosmic-distance scale as *standard candles” are 
required [4, 51. 

The Hubble law allows one to infer the distance to an object from its red shift z: 
d = zH,-’ z 3000~ h-’ Mpc (for z < 1, the galaxy’s recessional velocity u 2 zc), and 
hence ‘maps of the Universe” constructed from galaxy positions and red shifts are 
referred to as red-shift surveys. Ordinary galaxies and clusters of galaxies are seen 
out to red shifts of order unity; more unusual and rarer objects, such as radio galaxies 
and quasars. are seen out to red shifts of almost five (the current record holder is a 
quasar with red shift 4.9). Thus, we can probe the Universe with visible light to 
within a few billion years of the big bang. 
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1.1.2 The cosmic background radiation 

The spectrum of the cosmic hackground radiation ‘C‘BR) is consisrent [hat ,si A 
ilack body at temperature 1.7,X K over more than three ,decades in ~a~eiengrh \ _ 
cj,O~icm- 100cm1: see Fi;. 2. The most accurate measurement oi the temperature hrrd 
spectr)lm is that by the FIR.\S instrument on the COBE satellite ivhich derermlned 
its temperature to he Z.726 ~0.01 li i6]. It is difficult to come up with a procejs uthe: 
than an early hot and dense phase in the history of the I’niverse that ivould lead 
to such a precise black body [7:. .&cording to the standard cosmology. the surface 
of last scattering for the CBR is the Cniverse at a red shift of about 1100 and an 
age of about 1~0.000(fI,&z)-‘i2 yrs. It is possible that the I’niverse became ionized 
again after this epoch. or due to energy injection never recombined: in this case the 
last-scattering surface is even ,‘closer.“ z~ss C 10(R~h/&]-“3. 

The temperature of the CBR is very uniform across the sky. to better than a part 
in IO4 on angular scales from tens of arcseconds to 90 degrees: see Fig. 3. Three forms 
of temperature anisotropy-two spatial and one temporal-have now been detected: 
I I) ,A dipole anisotropy of about a part in LO’. generally believed to be due to the 
motion of galaxy relative to the cosmic rest frame. at a speed of about 620 kmsec-’ 
[9]; (2) .A yearly modulation in the temperature in a given direction on the sky 
of about a part in 104. due to our orbital motion around the sun at 30 kmsec-‘, 
see Fig. 4 [lo]; and (3) The temperature anisotropies detected by the Differential 
Microwave Radiometer (DMR) on the Cosmic Background Explorer (COBE) satellite. 

iilT/T) )10. : 2 “’ = 1 1 i 0.2 x 10-s and (AT/~‘)Q = 6 = 2 x lo-“. where the first 
measurement refers to the rms temperature fluctuation a\,eraged over the entire sky as 
measured by a beam of width IO”. and the second is the magnitude of the quadrupole 
temperature anisotropy [II]. The LO’ and quadrupole anisotropies provide strong 
evidence for primeval density inhomogeneities of the same magnitude. which amplified 
by gravity, grew into the structures that we see today: galaxies. clusters of galaxies. 
superclusters, voids. walls, etc. 

1.1.3 Primordial nucleosynthesis 

Last. but certainly not least, there are the abundance of the light elements. According 
to ,the standard cosmology, when the age of the Universe was measured in seconds, the 
temperatuns were of order MeV. and the conditions were right for nuclear reactions 
which ultimately led to the synthesis of significant amounts of D, 3He, ‘He. and ‘Li. 
The yields of primordial nucleosynthesis depend upon the baryon density. quantified 
as the baryon-to-photon ratio 7. and the number of very light (5 MeV) particle 
species. often quantified u the equivalent number of light neutrino species, .V,. The 
predictions for the primordial abundances of all four light elements agree with their 
measured abundances provided that 3 x IO-” 5 FJ s .5 x IO-“-’ and ?i, s 3.4; see 
Fig. 5 (151. 

Accepting the success of the standard model of nucleosynthesis, our precise knowl- 
edge of the present temperature of the Universe allows us to convert r) to a mass 
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Figure 2: (a) COBE FIRAS measurements of the CBR temperature: (b) Summary 
of other CBR temperature measurements (from [6]); the dotted curve indicate-s the 
data from the other high-precision measurement. by the CBC rocket-borne COBRA 
instrument (81. 
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Figure 3: Summary of recent high-sensitivity CBR anisotropy measurements: with 
the exception of COBE ail results are upper limits I From [I?. 13)). The solid boxes 

(MIT balloon experiment) have recently been reanalvzed and shown to be a detection 
which is consistent with the COBE DMR result [l-kj. 
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Figure 4: Yearly modulation of the CBR temperature-the earth really orbits the 
sun(!) (from [IO]). 
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Figure 5: Predicted tight-element abundances and inferred abundances (from il5]). 
The meaJur.4 primordial abundances are indicated and the concordance region is 
shaded. 



density, and by dividing by the critical density. pCn, 2 1.3Ak’ x 10dJ9g cm-‘. 10 the 
fraction of critical density contributed by ordinary matter: 

0.011 5 f&k' 5 0.019: 
? 

* 0.011 5 08 5 0.12: ! ! 

this is the most accurate determination of the baryon density. .Yote. the uncertaint! 
in the value of the Hubble constant leads to most of the uncertainty in Rg. 

The nucleosynthesis bound to .V,. and more generally to the number of lishr 
degrees of freedom in thermal equilibrium at the epoch of nucleosynthesis. is con- 
sistent with precision measurements of the properties of the Z0 boson. which give 
L’ = 3.0 i 0.05: further. the cosmological bound predates these accelerator mea- Y 

surements! The nucleosynthesis bound provides a stringent limit to the existence 
of new. light particles (even beyond neutrinos). and even provides a bound to the 
mass the tau neutrino. excluding a tau-neutrino mass between 0.5 MeV and 25 !vleL 
[IS]. Primordial nucleosynthesis provides a beautiful illustration of the powers of the 
Heavenly Laboratory. though it is outside the focus of these lectures 

The remarkable success of primordial nucleosynthesis gives us confidence that Ihe 
standard cosmology provides an accurate accounting of the Universe at least ti early 
as 0.01 set after the bang. when the temperature was about 10 !&V. 

1.1.4 Et cetera-and the age crisis? 

There are additional tines of reasoning and evidence that support the standard cos- 
mology [7]. I mention two: the age of the Universe and structure formation. I discuss 
the basics of structure formation a bit later; for now it suffices to say that the standard 
cosmology provides a basic framework for understanding the formation of structure- 
gravitational instability--which has recently been confirmed by COBE [II]. Here I 
will focus on the age of the Universe. 

The expansion age of the Universe--time back to zero size-depends upon the 
present expansion rate, energy content, and equation of state: ttrp = f(p,p)H;’ 2- 
9.8/z-‘/(p,p) Gyr. For a matter-dominated Universe. / is between I and 2/3 (for R. 
between 0 and 1). so that the expansion age is somewhere between 7 Cyr and 20 Gyr. 
There are other independent measures of the age of the Universe, e.g.. based upon 
long-lived radioisotopes, the oldest stars, and the cooling of white dwarfs. These 
“ages,” ranging from 13 to 18 Gyr, span the same interval(!). This wasn’t always 
the case; as late as the early 1950’s it was believe that the Hubble constant was 
500 km se@ Mpc -l, implying an expansion age of at most 2 Gyr-less than the age 
of the earth. This discrepancy was an important motivation for the steady-state 
cosmoiogy. 

While there is geneml agreement between the expansion age and other determina- 
tions of the age of the Universe, some cosmologists are worried that cosmology is on 
the verge of another age crisis 151. Let me explain. while Sandage and a few others con- 
tinue to obtain values for the Hubble constant around 50 kms+ Mpc-’ [2], a variety 
of different techniques seem to be converging on a value around 80 rt 10 kms-’ Mpc-’ 
151. If Ho = 80 kms-’ Mpc-‘, then t., = 12f(p,p) Gyr. and for fl, = 1, t., = 8 Gyr, 
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which is ciearly inconsistent with other measures of the age. I/H, = 30 kms-1 \[pc-‘. 
one is almost forced to consider the radical alternat1r.e o,t a cosmoioglcal constants 
For example, even with R. = 0.‘. 1 2: 0.s. corresponding to t.,, 2 :ocir: on 
the other hand. for a flat Cniverse with R.+ = 0.8. / 2 1.1 and the expanston see 
t Crp = 13.5 Gyr. As I shall drscuss later. structure formation provides another mo;i. 
vation for a cosmological constant. \fy own gut-level feeling is that ,&hen the dust . 
settles, we ~111 find that Ho = .50 kms-’ Xlpc-‘: then again. maybe not. 

1.2 Basics of the Big Bang Model 

The standard cosmology is based upon the maximally spatially symmetric Robertson. 
Walker line element 

ds2 = dt’ - R(t)’ -!f- + r*fdt?’ + sin’8dm’) ; 
1 - kr’ I 

where R(t) is the cosmic-scale factor, R,,, E R(t)lkl-‘I* is the curvature radius, 
and k/lkJ = -1.0. 1 is the curvature signature. ,111 three models are without bound- 
ary: the positively curved model is finite and “curves“ back on itself: the negatively 
curved and Rat models are infinite in extent (though finite versions of both can be 
constructed by imposing a periodic structure: identifying all points in space with a 
fundamental cube). The Robertson-Walker metric embodies the observed isotropy 
and homogeneity of the Universe. It is interesting to note that this form of the line 
element was originally introduced for sake of mathematical simplicity: we now know 
that it is well justified at early times or today on large scales (> lO.Mpc). at least 
within our Hubble volume. 

The coordinates, r. 0, and m, are referred to a comoving coordinates: A particle 
at rest in these coordinates remains at rest. i.e.. constant +. 0, and 6. A freely 
moving particle eventually comes to rest these coordinates, as its momentum is red 
shifted by the expansion, p a R-‘. Motion with respect to the comoving coordinates 
(or cosmic rest frame) is referred to as peculiar velocity; unless “supported” by the 
inhomogeneous distribution of matter peculiar velocities decay away as R-‘. Thus 
the measurement of peculiar velocities, which is not easy as it requires independent 
measures of both the distance and velocity of an object. can be used to probe the 
distribution of m-s in the Universe. 

Physical separations (i.e., measured by meter sticks) between freely moving par- 
ticles scale as R(t); or said another way the physical separation between two points 
is simply R(t) times the coordinate separation. The momenta of freely propagating 
particles decrease. or “red shift,” as R(t)-‘, and thus the wavelength of a photon 
stretches as R(t). which is the origin of the cosmological red shift. The red shift 
suffered by a photon emitted from a distant galaxy 1 + z = R,,/R(t); that is. a galaxy 
whose light is red shifted by 1 + z, emitted that light when the Universe was a factor 
of (1 + I)-t smaller. Thus, when the light from the most distant quasar yet seen 
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(z = 4.9) Was emitted the Universe was a faCtOr Of ahOSt six smaller: when CBR 
photons last scattered the Cniverse was about 1100 trmes smaiier. 

1.2.1 Friedmann equation and the First Law 

The evolution of the cosmic-scale factor is governed by the Friedmann equation 
2 

,LfJz ; = 3nFo1-&. 
0 R2 

.I , 

where ptol is the total energy density of the Universe. matter. radiation. vacuum 
energy, and so on. .A cosmological constant is often written as an additional term I = 
.\/3) on the rhs; I will choose to treat it as a constant energy density ( “vacuum-energy 
density”). where p Yy = .\iYnC. (.My convention in this regard is not universal.) The 
evolution of the energy density of the Universe is governed by 

d(pR3) = -pdR-’ i4i 

which is the First Law of Thermodynamics for a fluid in the expanding Universe. (In 
the case that the stress energy of the Universe is comprised of several, noninteracting 
components, this relation applies to each separately: e.g., to the matter and radiation 
separately today.) For p = p/3, ultra-reiativistic matter, p x R-‘; for p = 0, very 
nonrelativistic matter, p 3: Re3; and for p = -p, vacuum energy, p =cdnst. If the 
rhs of the Friedmann equation is dominated by a fluid with equation of state p = 7~. 
it follows that p 0: R-‘(I+” and R o( t2/3(‘+‘). 

We can use the Friedmann equation to relate the cur\~acure of the Universe to the 
energy density and expansion rate: 

kJR2 
-=R-I; 

HZ 
n=&?L.: 

Purr 

and the critical density today pcri, = 3H2/8nC = l.88h2 g cm-’ 2 1.05 x IO’eV cm-‘. 
There is a one to one correspondence between R and the spatial curvature of the 
Universe: positively curved, Rn > 1: negatively curved, Rc < 1; and flat (no = 1). 
Further, the “fate of the Universe” is determined by the curvature: model universes 
with k 5 0 expand forever, while those with k > 0 necessarily recollapse. The 
curvature radius of the Universe is related to the Hubble radius and R by 

rz, = ,H-’ 
/R - 111/Z’ (6) 

In physical terms, the curvature radius sets the scale for the size of spatial separations 
where the &cts of curved space become “pronounced.’ And in the case of the 
positively curved model it is just the radius of the &sphere. 

The energy content of the Universe consists of matter and radiation (today, 
photons and neutrinos). Since the photon temperature is accurately known. To = 
2.73 dr 0.01 K, the fraction of critical density contributed by radiation is also accu- 
rately known: R,dh’ = 4.18 x 10-s. The matter content is another matter. 
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1.2.2 A short diversion concerning the present mass density 

The matter density today. i.e.. the value of %I. is not nearly so well known [I 7;. Stars 
contribute less than 1% of critical density: based upon nucleosynthesis. we can infer 
thar baryons contribute between 1% and 10% of critical. The dynamics of various 
systems allow astronomers to infer their gravitational mass. With their telescopes 
they measure the amount of light, and form a mass-to-light ratio. Multiplying this 
by the measured luminosity density of the Universe gives a determination of the mass 
density. (The critical mass-to-light ratio is 1200h M,/C.,. J 

The motions of stars and gas clouds in spiral galaxies indicate that most of the 
mass of spiral galaxies exists in the form of dark (i.e.. no detectable radiation). ex- 
tended halos. whose full extent is still not known. Many cite the flat rotation curves 
of spiral galaxies. which indicate that the halo density decreases as r-l, u the best 
evidence that most of the matter in the Universe is dark. Taking the m&s-to-light 
ratio inferred for spiral galauies to be typical of the Universe as a whole and re- 
membering that the full extent of the dark matter halos is not known. one infers 
R h& 2 0.03 - 0.1. 

The masses of clusters of galaxies can be estimated using the virial theorem, 
and these mass estimates too indicate the presence of large amounts of dark matter. 
Taking cluster mass-to-iight ratios to be typical of the Universe M a whole, in spite 
of the fact that only about I in 10 galaxies resides in a cluster, one infers f&, w 
0.1 - 0.3. 

Most galaxies are found in associations of a few galaxies known = small groups. 
Estimating the masses of these systems using dynamics is tricky because of the prob- 
lem of “interlopers.” galaxies that happen to be in the same part of the sky, but 
are not associated with the group [18]. This Fall, however. ROS,4T detected the 
weak x-ray emission from the hot gas in the small group NGC 2300 [19]; from their 
measurements they were able to infer the shape of the gravitational potential-and 
hence total mass of the group-as well a the mass of the x-ray emitting gas and the 
visible mw in galaxies. They found that the total mass of the group was about 20 
times that in ordinary matter(!). If one takes this to be a universal ratio of the total 
amount of matter to that in baryons and Rs -- 0.05. one concludes that R. m 1. 

.\lot one of these methods is wholly satisfactory: Rotation curves of spiral galaxies 
are still *flat” at the last measured points. indicating that the mass is still increasing; 
lik&ise, cluster virial mass estimates are insensitive to material that lies beyond the 
region occupied by the visible galaxies-and moreover. only about one galaxy in ten 
resides in a &luster. What one would Like is a measurement of the mass of a very big 
sample of the Universe, say a cube of 100/t-’ .Mpc on a side, which contains tens of 
thousands of galaxies. 

Over the past five years or so progress has been made toward such a measurement. 
It involves the peculiar motion of our own galaxy, at a speed of about 620 kmsec-L in 
the general direction of Hydra-Centaurus. This motion is due to the lumpy distribu- 
tion of matter in our vicinity. By using gravitational-perturbation theory (actually, 
not much more than Newtonian physics) and the distribution of galaxies in our vicin- 
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ity (as determined by the IR,\.S catalogue of infrared selected galaxies I, one can Infer 
the average mass density in a very large volume and thereby O,,, 

The basic physics behind the method is simple: the ner <ravitationai pull on ,~ur 
galaxy depends both upon how inhomogeneous rhe distribution of galaxles ,s and how 
much mass is associated with each galaxy: by measuring the distribution of galaxies 
and our peculiar velocity one can infer the “mass per galaxy” and f!,. 

The value that has been inferred is big(!): RmAs -- 1 * 0.2 [20]. Xloreover. the 
measured peculiar velocities of other galaxies in this volume. more than thousand. 
have been used in a similar manner and indicate a similarly large value for R0 i’li. 
While this technique is very powerful. it does have its drawbacks: One has to make 
simple assumptions about how accurately mass is traced by light (the observed galax- 
ies); one has to worry whether or not a significant portion of our galaxy’s velocity is 
due to galaxies outside the IRAS sample-if so. this would lead to an overestimate of 
Ro: and so on. This technique is not only very promising-but provides the “correct” 
answer (in my opinion!). 

The so-called classical kinematic tests-Hubble diagram. angle-red shift relation, 
galaxy count-red shift relation-can. in principle. provide a determination of R. j22]. 
However. all these methods require standard candles. rulers. or galaxies, and for this 
reason have proved inconclusive. However. that hasn’t stopped efforts to use these 
tests. particularly the galaxy number-count test !23]. and one or more of these classical 
tests may one day provide a definitive measurement. 

To summarize this aside on the mass density of the Cniverse: 

1. Most of the matter is dark. 

‘2. Baryons provide between about 1% and 10% of the mass density, 

3. Ro,could conceivably be as small m 0.1~-in which cause all the dark matter could 
be baryons (e.g., neutron stars, “jupiters.” and so on). 

4. If asked for the value of Ro, a typical astronomer would respond with a number 
in the interval 0.2 zt 0.1. 

j. The evidence continues to mount for a gap between fls and l&--in which case 
nonbaryonic dark matter is required. 

The current prejudictand certainly that of this author-is a flat C‘niverse (R,, = 
1) with nonbaryonic dark matter. Rx * 1 B Rs. However, I shall continue to display 
the Ro dependence of important quantities. 

1.2.3 The early, radiation-dominated Universe 

In any case. at present, matter outweighs radiation by a wide margin. However. since 
the energy density in matter decreases as R-s. and that .in radiation as RS4 (the 
extra factor due to the red shifting of the energy of relativistic particles), at early 
times the Universe was radiation dominated-indeed the calculations of primordial 
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Figure 6: The total effective number of relativistic degrees of freedom g.(T) in the 
standard model of particle physics as a function of temperature. 

nucleosynthesis provide excellent evidence for this. Denoting the epoch of matter. 
radiation equality by subscript ‘EQ,’ and using To = 2.X Ii. it follows that 

REO = 4.13 x 10-S(R,,h2)-‘; TEQ = .5.62(Roh2) eV: (7 

~EQ = 4.17 x 10’o(R&2)-2 sec. (8) 

At early times the expansion rate and age of the Universe were.determined by the 
temperature of the Universe and the number of relativistic degrees of freedom: 

r2P 
hi = my H z 1.67gf/‘T2/mp,; (9) 

* R OL t”‘; t z 2.42 x lo-‘g, ‘/‘CT/ GeV)-’ set; (10) 

where g.(T) counts the number of ultra-relativistic degrees of freedom (S the sum 
of the internal degrees of freedom of particle species much less massive than the 
temperature) and mpt c G-‘I* = 1.22 x 10L9 GeV is the Planck mass. For example, 
at the epoch of nucleosynthesis, g. = 10.75 assqing three. light (< .MeV) neutrino 
species; taking into account all the species in the standard model, g. = iO6.i5 at 
temperatures much greater than 300 GeV; see Fig. 6. 
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x quantity of importance related to 9. is the entropy density in reiativistjc parti. 
cles, 

P+P .>$ 
s = - = ljg.T3. 

T 
and the entropy per comoving volume. 

5 x R3s 1 g.R’T’3 

By a wide margin most of the entropy in the Cniverse exists in the radiation hath. 
The entropy density is proportional to the number density of relativistic parr~cles. 
.At present. the relativistic particle species are the photons and neutrinos. and the 
entropy density is a factor of 7.04 times the photon-number density: n, = 41:3cm-’ 
and s = 2905cm-‘. 

In thermal equilibrium-which provides a good description of most of the history 
of the Cniverse-the entropy per comoving volume 5 remains constant. This fact is 
very useful. First, it implies that the temperature and scale factor are related by 

I- x g;“‘R-I. (llj 

which for 9. =const leads to the familiar r I R-‘. 
Second, it provides a way of quantifying the net baryon number (or any other 

particle number) per comoving volume: 

.VB z R3nB = 2 5 (4 - 7) x III-~‘. 
s 

(12) 

ThC baryon number of the Universe tells us two things: I, I) the entropy per particle 
in the Universe is extremely high. about 10” or so compared to about 10d2 in the 
sun and a few in the core of a newly formed neutron star. (2) The asymmetry 
between matter and antimatter is very small. about lo-“. since at early times quarks 
and antiquarks were roughly a.s abundant as photons. One of the great successes of 
particle cosmology is baryogenesis, the idea that. f3. C, and CP violating interactions 
occurring out-of-equilibrium early on allow the Universe to develop a net baryon 
number of this magnitude [24]. 

Finally. the constancy of the entropy per comoving volume allows us to charac- 
terize the size of comoving volume corresponding to our present Hubble volume in a 
very physical way: by the entropy it contains. 

.Y?, = yH;3, 2 1090 

1.2.4 The earliest history 

The standard cosmology is tested back to times as early as about 0.01 set; it is only 
natural to ask how far back one can sensibly extrapolate. Since the fundamental 
particles of Nature are point-like quarks and leptons whose interactions are pertur- 
batively weak at energies much greater than 1 GeV. one can imagine extrapolating as 
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far back a the epoch where general relativity becomes suspect. i.e.. where quantum 
gravitational effects are likely to be important: the Planck epoch. t z iO-‘3 set and 
r 5 10’~ GeV. Of course. at present. our firm understanding of the elementary sar- 
titles and their interactions only extends to energies of the order of 100&V. which 
corresponds to a time of the order of IO-“see or SO. We can be reiatively certain 
that at a temperature of 100 !vfeV - ZOO 1feV (t h IO-‘secj there was a transition 
(likely a second-order phase transition) from quark/gluon plasma to very hot hadronic 
matter. and that some kind of phase transition associated with the symmetry break- 
down of the electroweak theory took place at a temperature of the order of 1300 CeV 
[t - IO-” set). 

It is interesting to look at the progress that has taken place since U’einberg’s 
classic text on cosmology wits published in 1972 [x]; at that time many believed 
that the Cniverse had a limiting temperature of the order of several hundred MeV. 
due to the exponentially rising number of particle states, and that one could not 
speculate about earlier times. Today, based upon our present knowledge of physics 
and powerful mathematical tools (e.g.. gauge theories. grand unified theories. and 
superstring theory) we are able to make quantitative speculations back to the Planck 
epoch-and even earlier. Of course. these speculations could be totally wrong, based 
upon a false sense of confidence (arrogance’?). .As I shall discuss, inflation is one 
of these well defined-and well motivated-speculations about the history of the 
Universe well after the Planck epoch, but well before primordial nucleosynthesis. 

1.2.5 The matter and curvature dominated epochs 

After the equivalence epoch, the matter density exceeds chat of radiation. During the 
matter-dominated epoch the scale factor grows as t2” and the age of the C’niverse is 
related to red shift by 

t = 2.06 x l~I~‘(Roh~)~“~( 1 + z)-~” sec. (14) 

If f& < 1, the matter-dominated epoch is followed by a “curvature-dominated” 
epoch where the rhs of the Friedmann equation is dominated by the (kl/R2 term. 
When the Universe is curvature dominated it is said to expand freely, no longer 
decelerating since the gravitational effect of matter has become negligible: b =z 0 and 
R c( t. The epoch of curvature dominance begins when the matter and curvature 
terms are equal: 

Rco = 6 - %; ‘CD = 0,’ - 2 - i-l;‘; 
0 

(15) 

where the limits shown are for R. - 0. By way of comparison. in a flat Universe with 
a cosmological constant. the Universe becomes *vacuum dominated” when R = R.,: 

113 
- f-p; zvy = ( y)“3 - 1 - Q;“3. (16) 
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For a given value of Rc. the transition occurs much more recently. which has impor- 
tant impbcatrons for structure formation since small density perturbations only grow 
during the matter-dominated era. 

1.2.6 One last thing: hori&ns 

In spite of the fact that the L’niverse was vanishingly small at early times. the rapid ex- 
pansion precluded causal contact from being established throughout. Phorons travel 
on null paths characterized by dr = dt/R(t): the physical distance that a photon 
could have traveled since the bang until time t. the distance to the horizon. is 

&-At) = ,,tIl'& 

= t/i1 - n) = nff-‘/( 1 - n) for R(t) x t”, n c I. il7i 

Note. in the standard cosmology the distance to the horizon is finite, and up to 
numerical factors. equal to the age of the Cniverse or the Hubble radius. H-'. For 
this reason. I will use horizon and Hubble radius interchangeably,’ 

.An important quantity is the entropy within a horizon volume: SHoR z H-‘Ts; 
during the radiation-dominated epoch H z T’/mp,, so that 

from this we conclude that at early times the comoving i.olume that encompasses all 
that we can see today (characterized by an entropy of I@“) was comprised of a very 
large number of causally disconnected regions. 

1.3 The challenge: development of structure 

This brings us to what I believe is the major challenge of the standard cosmology 
at present: a detailed understanding of the formation of structure in the Universe. 
We have every indication that the Universe at early times, say t < 300.OOOyrs, 
was very homogeneous; however, today inhomogeneity (or structure) is ubiquitous: 
stars (6p/p - 10m), galaxies (6p/p m IO’). clusters of galaxies (6p/p m 10 - lOa), 
superclusters, or Yclusten of clusters” (Sp/p w I). voids (6p/p 5 -1). great walls, 
and so on. 

For some 25 years the standard cosmology has provided a general framework 
for understanding this: Once the Universe becomes matter dominated (around 1000 

‘In inflationary models the horizon and Hubble radius are not roughly equal aa the horizon 

distance grows exponentiagy relative to the Hubble radius: in fact, at the end of inflation they differ 

by eN, where N is the number of e-folds of intlation. However. I will slip and use “horizon” and 

“Hubble radius” interchangeably. though 1 will always mean Hubble radius. 
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yrs after the bang) primeval density inhomogeneities (~P;P 5 IO-‘) are amplified 
by gravity and grow into the structure we see today :26]. The fact that a flu:d 
of self-gravitating particles is unstable to the growth of small inhomogenertres ivas 
lirst pointed out by Jeans and is known as the Jeans instability. The existence 
of these inhomogeneities was confirmed in spectacular fashion bv the COBE D!,fR 
discovery of CBR anisotropy this past spring: The temperature anisotropies derected 
almost certainly owe their existence to primeval density inhomogeneities. as causalit) 
precludes microphysical processes from producing anisotropies on angular scales larger 
than about I”. the angular size of the horizon at last scattering. 

At lat. the basic picture has been put on firm ground 1, whew!). Now the challenge 
is to fill in the details-origin of the density perturbations. precise evolution of the 
structure. and so on. .As I shall emphasize. such an understanding may well be within 
reach. and offers a window on the early Universe. 

1.3.1 The general picture: gravitational instability 

Let us begin by expanding the perturbation to the matter density in plane waves 

6p.d~. t) 1 
PM 

= - d3k 6L(t)e-‘k’x, 
(?T)3 / (19) 

where A = 2x/k is the comoving wavelength of the perturbation and Xp~, = RA is the 
physical wavelength. The comoving wavelengths of perturbations corresponding to 
bright galaxies. clusters. and the present horizon scale are respectively: about 1 Mpc. 
10 Mpc, and 3000h-’ Mpc. where 1 Mpc z- 3.09 x 10” cm 2 1.56 x loss GeV-r. 

The growth of small matter inhomogeneities of wavelength smaller than the Hub- 
ble scale (ApkYS s H-‘) is governed by a r\lewtonian equation: 

2, + 2H& f v,‘k’6JR’ = 4~C~,~6,,. 

where IJ,’ = dp/dpM is the square of the sound speed. Competition between the pres- 
sure term and the gravity term on the rhs determine whether or not pressure can 
counteract gravity: Perturbations with wavenumber larger than the Jeans wavenum- 
ber. kj = IrGR*p~/uj, are Jeans stable and just oscillate; perturbations with smaller 
wavenumber are Jeans unstable and can grow. For cold dark matter u, 3: 0 and au 
scales are Jeans unstable; even for baryonic matter. after decoupling k, corresponds 
to a batyon mass of only about 10sM~. ,411 the scales of interest here are Jeans 
unstable and we will ignore the pressure term. 

Let us discuss solutions to this equation under different circumstances. First. 
consider the Jeans problem, evolution of perturbations in a static fluid, i.e., H = 0. 
In this c=e Jeans unstable perturbations grow exponentiaily, 6k x exp(t/r) where T = 
l/v’-. Next, consider the growth of Jeans unstable perturbations in a matter- 
dominated Universe, i.e., HZ = daGp~/3 and R x t 
to ‘pull particles away from one another,” 

2/3 Because the expansion tends 
the growth is only power law, 6k x t’/); 

i.e., at the same rate as the scale factor. Finally. consider a radiation or curvature 



dominated Universe. i.e.. 3-Gp,d/3 or ii/R’ much greater than 3&p,,,i:j. 1x1 rhis 
case, the expansion is so rapid that matter perturbations grow very slowly. as Ln R 
in radiation-dominated epoch. or not at all Sk =const in the curvature.domnated 
epoch. 

The growth of nonlinear perturbations is another matter; once a perturbatron 
reaches an overdensity of order unity or larger it “separates” from the expansion- 
i.e.. becomes its own self-gravitating system and ceases to expand any further. [n the 
process of virial relaxation. its size decreases by a factor of two-density increases by 
a factor of S; thereafter. its density contrast grows as R3 since the average matter 
density is decreasing as R-‘. though smaller scales could become Jeans unstable and 
collapse further to form smaller objects of higher density. Stars. etc. 

From this we learn that structure formation begins when the Cniverse becomes 
matter dominated and ends when it becomes curvature dominated (at least the 
growth of linear perturbations). The total growth available for linear perturba- 
tions is RCD/REQ z ?.-I x 10’ Rib’: since nonlinear structures have evolved by the 
present epoch. we can infer that primeval perturbations of the order (~P,~/P.~)EQ * 
4 x 10-s (Reh)-’ are required. Note that in a low-density Universe larger initial 
perturbations are necessary as there is less time for growth (“the low R. squeeze”). 
Further. in a baryon-dominated Universe things are even more difficult as perturba- 
tions in the baryons cannot begin to grow until after decoupling since matter is tightly 
coupled to the radiation. (In a flat, low-R0 model with a cosmological constant the 
growth of linear fluctuations continues until almost today since .zh N &‘/a. and so 
the total growth factor is about 2.4 x 10’(Roh2). We wiil return to this model later.) 

1.3.2 CBR temperature fluctuations 

The existence of density inhomogeneities has another important consequence: fluctu- 
ations in the temperature of the CBR of a similar amplitude [2i]. The temperature 
difference measured between two points separated by a large angle (2 1”) arises due 
to a very simple physical effect:* The difference in the gravitational potential between 
the two points on the last-scattering surface. which in turn is related to the density 
perturbation, determines the temperature anisotropy on the angular scale subtended 
by that length scale. 

(21) 

where the scale X 5 lOOh-’ Mpc(@/deg) subtends an angle B on the last-scattering 
surface. This is known ap, the Sachs-Wolfe effect (281. 

The quantity (6P/p)Hon.~ is the amplitude with which a density perturbation 
crosses inside the horizon, i.e., when RA - H-‘. Since the fluctuation in the gravi- 
tational potential So z (RA/H-‘)‘(Sp/p). the horizon-crossing amplitude is equal to 

‘Large angln mean those larger than the angle subtended by the horizon-scale at decoupling, 
e-H&/H;'- z,;:'- I' 
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the gravitational potential (or curvature) fluctuation. The horizon-crossing amplitude 
(6~/p)~o~ bar several nice features: (i) during the matter-dominated era the potential 
fluctuation on a given scale remains constant. and thus the potential Auctuatlons at 
decoupling on scales that crossed inside the horizon after matter-radiation equality. 
corresponding to angular scales 5 O.l”, are just given by their horizon-crossing am- 
plitude: (ii) because of its relationship to 6o it provides a dimensionless. geometrical 
measure of the size of the density perturbation on a given scale. and its effect on the 
CBR: (iii) by specifying perturbation amplitudes at horizon crossing one can effec. 
tively avoid discussing the evolution of density perturbations on scales larger than 
the horizon. where a Newtonian analysis does not suEice and where gauge subtleties 
(associated with general relativity) come into play: and finally (iv) the density per- 
turbations generated in inflationary models are characterized by (6P/P)Hon zconst. 

On angular scales smaller than about 1” two other physical effects lead to CBR 
temperature fluctuations: the motion of the last-scattering surface (Doppler) and the 
intrinsic fluctuations in the local photon temperature. These fluctuations are much 
more difficult to compute. and depend on microphysics-the ionization history of 
the Universe and the damping of perturbations in the photon-baryon fluid due to 
photon streaming. Not only are the Sachs-Wolfe fluctuations simpler to compute, 
but they accurately mirror the primeval fluctuations since at the epoch of decoupling 
microphysics is restricted to angular scales less than about a degree. 

In sum. on large angular scales the Sachs-Wolfe effect dominates; on the scale of 
about 1’ the total CBR fluctuation is about twice that due to the Sachs-Wolfe effect: 
on smaller scales the Doppler and intrinsic fluctuations (dominate. CBR temperature 
fluctuations on scales smaller than about 0.1” are severely reduced by the smearing 
effect of the finite thickness of last-scattering surface. 

Details aside. in the context of the gravitational instability scenario density pertur- 
bations of sufficient amplitude to explain the observed structure lead to temperature 
fluctuations in the CBR of characteristic size, 

6T 
- 2 10-S(Roh)-2. 
T 

To be sure I have brushed over important details. but this equation conveys a great 
deal. First, the overall amplitude is set by the inverse of the growth factor, which is 
just the ratio of the radiation energy density to matter density at present. Next, it 
explains why theoretical cosmologists were so relieved when the COBE DMR detected 
temperature fluctuations of this amplitude., and conversely why one heard offhanded 
remarks before the COBE DMR detection that the standard cosmology wu in trouble 
because the CBR temperature was too uniform to allow for the observed structure 
to develop. Finally, it illustrates one of the reasons why cosmologists who study 
structure formation have embraced the flat-universe model with such enthusiasm: If 
we accept the Cniverse that meets the eye, Ru 5 0.1 and baryons only, then the 
simplest models of structure formation predict temperature fluctuations of the or- 
der of 10e3, far too large to be consistent with observation. Later, I will mention 
Pee&s. what-you-see-is-what-you-get model [29], also known a PIB for primeval 
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baryon isocurvature fluctuation. which is stlll viable because the spectrum of pertur. 
bations decreases rapidly with scale so that the perturbations that give rise to CBR 
fluctuations are small (which is no mean feat). Historically. it was fortunate that 
one started with a low-&. baryon-dominated Cniverse: the theoretical predicttons 
for the CBR fluctuations were sufficiently favorable that experimentalist were stirred 
to try to measure them-and then. slowly. theorists lowered their predictions. Had 
the theoretical expectations begun at 10-s. experimentalists might have been too 
discouraged to even try! 

1.3.3 An initial data problem 

With the COBE D.MR detection in hand we can praise the success of the gravitational 
instability scenario: however, the details now remain to be fiiled in. The structure 
formation problem is now one of initial data. namely 

1. The quantity and composition of matter in the Cniverse. R,,. Rg, and Rother 

2. The spectrum of initial density perturbations: for the purist, (SP/P)EQ. or for 
the simulator. the Fourier amplitudes at the epoch of matter-radiation equality. 

In a statistical sense. these initial data provide the “blueprint” for the formation of 
structure. 

The initial data are the challenge and the opportunity. Although the gravitational 
instability picture has been around since the discovery of the CBR itself. the lack of 
specificity in initial data has impeded progress. With the advent of the serious study of 
the earliest history of the Universe a new door was opened. We now have several well 
motivated early-Universe blueprints: Inflation-produced density perturbations and 
nonbaryonic dark matter: cosmic-string produced perturbations and nonbaryonic dark 
matter [30]; texture produced density perturbations and nonbaryonic dark matter 
[31]; a baryon-dominated Universe with isocurvature fluctuations3 [29]. Structure 
formation also provides the opportunity to probe the earliest history of the Universe, 
by testing these interesting, if not bold, blueprints. I will be focusing on the blueprints 
motivated by inflation. 

2 Inflation: An Overview 

2.1 Shortcomings of the Standard Cosmology 

By now the shortcomings of the standard cosmology are well appreciated: the horizon 
or large-scale smoothness problem; the small-scale inhomogeneity problem (origin of 

‘Isocurvature baryon-number fluctuations correspond at early times to fluctuations in the local 

baryon number but not the energy density. At late times when the Universe is matter dominated, 

they become %uctuations in the msrs density of a comparable amplitude. 

20 



density perturbations); the flatness or oldness problem: and the monopole problem. I 
will only bridy review them here. They do not Indicate any logical inconsistencies of 
the standard cosmology; rather. that very special initial data seem to be required for 
evolution to a universe that is qualitatively similar to ours today. Nor is inflation the 
first attempt to address these shortcomings: Over the past two decades cosmologists 
have pondered this question and proposed other solutions [33]. Inflation is a solution 
based upon well-defined. albeit speculative, early-C’niverse microphysics describing 
the post-Planck epoch. 

The uniformity of the CBR temperature, to better than a part in 10’. implies that 
the Universe on the largest scales (say 2 lOOh-’ Mpc) is very smooth ds density in- 
homogeneities induce temperature fluctuations of a similar magnitude. The existence 
of particle horizons in the standard cosmology precludes explaining the smoothness 
as a result of microphysical events: The horizon at decoupling, the last time one 
could imagine temperature fluctuations being smoothed by particle interaciions. cor- 
responds to an angular scale on the sky of about 1”. which precludes temperature 
variations on larger scales from being erased. In terms of entropy, the presently ob- 
served Cniverse. corresponds to a comoving volume containing an entropy of order 
10%; during the early radiation dominated epoch the horizon volume contained an 
entropy of order (mp~/?‘)~. implying that at early times our current Hubble volume 
consisted of countless, causally distinct regions. 

To account for the small-scale lumpiness of the Universe today, density perturba- 
tions with horizon-crossing amplitudes of 10-s on scales of 1 Mpc to 10’ Mpc or so 
are required. As can be seen in Fig. 7, in the standard cosmology the physical size of 
a perturbation, which grows as the scale factor, begins larger than the horizon and 
relatively late in the history of the Universe crosses inside the horizon, 

THOR 2 3 x lOs(X/ Mpc)’ set x 5 13/t-’ Mpc; 
2: 3 x lO’(X/ M~c)~ set x 2 13h-2 Mpc. (23) 

This precludes a causal microphysical explanation for the origin of the required density 
perturbations.’ 

The fact that Ro is of order unity means that the curvature radius is comparable 
to the Hubble radius. Had that been the case at the initial epoch, the Universe wouid 
be a very different place today: Since the curvature term in the Friedmann equation 
de&e-es only as R-l, while the matter and radiation densities decrease as Rw3 
and R-’ ru?ectively, a curvature radius comparable to the Hubble radius early on 
would have Led to a Universe that quickly became curvature dominated. For positive 

‘Of course, it is pouible to produce the perturbations at very late times, when the relevant 

scale has already crossed inside the horizon [32]; the motivation for the nonstandard microphysics 
. 

required to do so is lacking at present. It is alao possible for microphysics to produce imcurvature 

perturbations by producing a pressure wave that eventually propagates to large scales; this is the 

type of perturbation that is generated by cosmic strings or textures. 
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Figure 7: The physical wavelength of a density perturbation and the horizon size ff-’ 
as a function of scale factor; ACAL indicates a galactic sized perturbation (A - 1 Mpc) 
and XHOR corresponds to the present Hubble radius I horizon). Microphysics operates 
on scales 5 H-l; without inflation scales cross the Hubbie radius but once. 
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curvature, recoilapse would follow quickly, and for negative curvature. a coasting 
phase that would lead to a L-niverse that cools too quickly (for tiluciA z (o-” sec. the 
temperature reaches 3 K at an age of lo- “set). Put another way. R is an unstable 
fixed point: 

the deviation of Q(t) from unity increases as r(t) cc R“. n = 2 (radiation-dominated 
epoch), n = I (matter-dominated epoch). In order that R still be close to unity today, 
it must have extremely close to unity early on; for tititid w LO-” set, JR(fikcid) - I] 5 
LO-” is necessary. Thus, for most of its history the Universe must have beenextremely 
flat. i.e., & > H-': if Rs is not equal to unity, then the Universe just today is 
beginning to exhibit its curvature. Why now’? 

Last, I mention the monopole problem: The simplest grand unified theories and 
the standard cosmological lead to a disastrous prediction. the extreme overproduction 
of magnetic monopoles [34]. This overproduction traces to the smallness of the horizon 
at very early times: magnetic monopoles are produced as defects of the CUT phase 
transition at an abundance of about I per horizon volume which corresponds to a 
present monopole to photon ratio of order (T&/mpt)‘. 

The first three problems do not involve logical inconsistencies: The initial data for 
a perturbed FRW ‘model that is extremely flat exist. Rather. it is the fact that such 
initial data are “very special” which is disturbing. Collins and Hawking quantified 
it: The set of initial data that evolve to a state qualitatively similar to our Universe 
is of measure zero (351. Maybe the Creator had a lucky day! Or better yet, perhaps 
the present state of the Universe traces to events that took place early on. inflation 
provides an interesting example of the Latter. 

2.2 Generic Aspects of Inflation 

Inflationary cosmology has become a very mature subject in the decade since Guth 
wrote his inkntial paper [36] that launched the inflationary cosmology boom. While 
there are a multitude of different kinds of inflation (see below), two features are 
common to all models of inflation [37] 

l Superluminal expansion 

l .Massive entropy production 

Superluminal expansion refers to accelerated growth of the scale factor (R > 0 
which implies R o( t” with n > l), and its necessity is easy to understand. In order 
that the physical size of a comoving scale, d,+,. cc R(t), begin sub-Hubble size and 
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Figure 8: The free-energy density hs a function of temperature for a first-order phase 
transltron. 

and become super-Hubble size. R(t) must increase faster than t since H-’ I R(t)t’“. 
Thus, “superluminal” expansion is a necessary kinematic requirement if one is to both 
soive the horizon and create density perturbations (see Fig. 7). 

The reason for the second requirement is equally simple: In the absence of entropy 
production the entropy per comoving volume 5 I (RT)’ remains constant; rapid 
expansion can create a “very Large” smooth patch. but the entropy within that patch 
remains constant. As discussed above. at early times the entropy within a horizon- 
~sired patch is very small. too small to account for the entropy within our present 
Hubble volume. Only massive entropy production can change this 1371. 

To illustrate. consider Guth’s original model of inflation based upon a first-order 
phase transition [36]. The basic idea is that the Higgs field responsible for the spon- 
taneous breakdown of the GUT symmetry gets “hung up” in a local. high-energy, 
minimum of its potential (more precisely, free-energy density). At high temperatures 
the state of minimum free energy is characterized by o = 0. indicating that the full 
GUT symmetry is manifest: as the temperature drops below the critical temperature, 
the state of minimum free energy is characterized by Ed # 0, the state that exhibits 
broken symmetry. In a first-order transition o = 0 can remain a local minimum of the 
free energy, separated from theglobal minimum by a potential barrier: see Fig. 8. Dur- 
ing the time that .$ is hung up the large vacuum-energy density, p = V(d = 0) s A-i’. 
drives very rapid expansion (M is the energy scale that characterizes of the symmetry 
breaking). 

For definiteness, take M = 10”GeV. a typical scale for inflation: the Hubble 
time associated with the false-vacuum energy H-’ -- 10-“sec. The size of a region 
that one might expect to be smooth is of order ct w 10-‘scm; the entropy within 
such a patch is of order IO”. While the Higgs field is trapped in the false vacuum, 
the temperature of the Universe continues to decrease as R-‘; very soon the thermal 
energy density becomes insignificant compared to the constant false-vacuum energy 
density. At this point, the Universe enters a de Sitter phase of exponential expansion 
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since p N ,M’ =const; this is the superluminai expansion. As the Universe expands. 
it c&s exponentrally wth the entropy per comovmg volume remainmg constant: r’ne 
smooth horizon-sized patch continues to contain an entropy of only 10” as it grows 
exponentially in size. 

During inflation the scale factor undergoes many e-folds: the precise number is 
determined by how long the Higgs field is hung up: .V = Hit. .Again. for defmiteness. 
suppose that the Universe gets hung up for a mere IO-‘* set; then. during inflation 
the patch grows in linear size by en” w IO’s and its temperature drops by the same 
factor. Thus far. inflation has done little. When the Riggs field does make its way 
to the true vacuum. the enormous false-vacuum energy is released and ultimately 
thermal&d, reheating the patch to a temperature of order .M - lO”GeV, thereby 
increasing the entropy of the patch by a factor of 2” w 10’29. This is the massive 
entropy production. After -reheating” the patch contains an entropy of order 10”s. 
and can easily contain the comoving volume that corresponds to our present Hubble 
radius, which is characterized by an entropy of “only” lOso. 

It is clear that the smoothness problem has been solved. The kinematic re- 
quirement for producing density perturbations on astrophysically interesting scales 
has been satisfied: the mechanism that produces density perturbations, quantum 
fluctuations in the o field, will be discussed later. What about the flatness prob- 
lem? Suppose for definiteness at the curvature radius at the beginning of in- 
flation is of order the Hubble radius (which corresponds to R just beginning to 
deviate from unity); at the end of inflation the curvature radius has grown by a 
factor of eN, while the energy density has remained constant. This means that 
R end = l/[l - (k/RZ)/(8sCp/3)] 2 1 *e -IN has been reset to a value exponen- 
tially close to unity. Using our fiducial numbers. at the end of inflation the curvature 
radius is order iO2’ cm: from then until today it grows by’ a factor of .ti/3 K + lo*‘. 
reaching a present size of order 10”cm. This is enormous compared to the present 
Hubble radius and implies that R is still very close to unity today. The flatness 
problem has clearly been solved and a flat Universe predicted. 

Consider the fate of monopoles-or any other “cosmic pollutant” in the pre- 
inflationary Universe. The number of monopoles within the patch (= :VM) remains 
constant; however, the number per comoving volume, n,w/s = iv,/S. decreases by 
a factor of eJN * 10’” due to the massive entropy production. Undesirables are 
diluted away! Of course, this also implies that the baryon number of the Universe, 
ns/s -. lo-‘“, must be produced after inflation. 

Finally, a simple exercise: what is the minimum amount of inflation needed to 
solve the smaothnas problem? Start with a Hubble-sized patch at the beginning of 
inflation; it contains an entropy of Siti,, m H-'T' w (mp~/M)~. Assuming perfect 
conversion of vacuum energy to radiation, after inflation the entropy contained within 
the patch is esNSiklid 5 e3N np13/M3. To solve the smoothness problems this must 
be greater than low. which implies 

.V 2 Nh = 56 + In(M/lO” GeV). 
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Equivalently, one can express the size of the patch today relative to the present Hubble 
radius. 

d p’* = exp( .V - .Vm,,! H,’ L’d, 

LVhat about the flatness problem? It is simple to ~hwv :he present value a,~ fi Iz 
related to that at the beginning of inflation and the size of the patch today: 

H;' ' 
qo-11= - 

( 1 d 
&mO*rmn - 11 l2ii 

p.tch 

Remarkably enough, the amount of inflation required to solve the flatness and jmooth. 
ness problems is the same. Put another way. if one comfortably solves the smoothness 
problem. Ro is necessarily very. very close to unity. This means that a flat Cniverse 
is an unequivocal prediction of inflation. 

2.3 Current Status of Inflationary Models 

2.3.1 Types of inflation 

In this very brief overview I divide models of inflation into three broad classes: old. 
slow rollover. and first-order (or extended). By old inflation I mean Guth’s original 
model. which I forgot to mention was a nonstarter! Let me explain; once trapped 
in the false vacuum, the Higgs field must quantum-mechanically tunnel to the true 
vacuum; in order to ensure a. sufficient amount of inflation. this transition must not 
occur until 60 or so Hubble times after inflation has begun. As we shall see this is 
essentially impossible to arrange. 

The decay of the false vacuum is well understood [3>j: It proceeds via the nucle- 
ation of bubbles of true vacuum that expand outward at the speed of light. For a 
given potential the bubble nucleation rate (per unit volume) T is straightforward to 
calculate [38]. Roughly speaking, bubbles convert all of space into the true vacuum 
when T/H', the number of bubbles nucleated in a Hubble volume in a Hubble time 
exceeds order unity; since each bubble nucleated during a Hubble time liberates about 
a Hubble volume, T/H’ m 1 ensures that all of space is converted to true-vacuum in a 
Hubble time (before the expansion *creates” more false vacuum). The false-vacuum 
energy is converted into “heat” by the collision of vacuum bubbles [39]. 

The recipe for successful old inflation is for r/H’ to remain less than unity for 60 or 
so Hubble ti?es and then increase to greater than unity. Unfortunately. shortly after 
inflation begrns P, like the expansion rate becomes constant. as the temperature of 
the Universe rapidly approaches zero and become irrelevant. This is the fundamental 
problem with old inflation; T/H' is constant. The Universe can either get hung up 
in the false vacuum and inflate. or make the transition to the true vacuum, not both! 

Slow-rollover inflation soived this problem. but at a price. The fix, suggested in- 
dependently by Linde [JO]. and Albrecht and Steinhardt [II]. is for inflation to occur 
as the scalar field slowly rolls the potential. They proposed using very flat poten- 
tials with small or nonexistent barriers between the false and true vacuum states: the 



vacuum-driven expansion takes place as the scalar field slowly (timescaie 2 60H-I). 
but inewtably rolls toward the true-vacuum state. When the scalar iieid responsi. 
ble for inflation (often called the i&ton) reaches the true minimum of its potential 
it oscillates about it. the large vacuum energy having been converted into coher- 
ent inflaton oscillations. These oscillations ultimately decay into light-particle states 
reheating the Cniverse. From the quantum view. these coherent field oscillations car. 
respond to zero-momentum inflaton particles: the decay of the scalar-field oscillations 
corresponds to the decay of massive inflaton particles [+2]. 

Slow rollover led to the first viable models of inflation. There wss. however, a 
price: In all models of slow-rollover the inflaton field must be very weakly coupled 
(dimensionless self coupling of order 10-l’ or so); as we shall see this is dictated by 
achieving density perturbations of size lo-’ or so. Because of this fact, the inflaton 
cannot be directly responsible for GUT symmetry breaking as loop corrections from 
the inflaton-gauge interaction would spoil the flatness of the potential. The decoupled 
nature of the scalar field responsible for inflation gave birth to its name. In the 
broadest sense. slow-rollover inflation refers to any model of inflation where the a 
scalar field is displaced from the minimum of its potential and slowly rolls to the 
minimum. The minimum can be away from the origin. as with a potential associated 
with spontaneous symmetry breaking (often referred to as &new inflation”), or at the 
origin, e.g., V(Q) = A@’ or V(4) = mz8/2 (often referred to as chaotic inflation). 

The latest and perhaps most interesting development in inflationary models is 
first-order (or extended) inflation [43]. In many ways it combines the best features 
of; old inflation-intimate connection to particle physics phenomenology-and slow- 
rollover inflation-it works! As the name suggests, these models are associated with 
a first-order phase transition: how then do these models solve the Guth dilemma- 
the constancy of T/H’? The first model of this type was due to La and Steinhardt 
[44]; their new twist wa to use the Brans-Dicke theory of gravity rather than general 
relativity. In Brans-Dicke the gravitational constant G.r = Qez, and evolves ss the 
Brans-Dicke field @ evolves. Because of this, for constant energy density the scale 
factor only increases as a power of time, R(t) ,X t’c’/2 and H decmcrses with time: 
here w is the coefficient of the kinetic-energy term for @. Thus, the efficiency of 
bubble nucleation T/H’ 0: t’ increases during inflation; at early times it can be much 
less than unity (so that the Universe remains trapped in the false vacuum) and then 
exceeds unity triggering the end of inflation via the nucleation and percolation of 
bubbles of true vacuum. 

Models based on variations of this idea have been proposed. For example, if the 
Higgs field czmpla to other fields which are evolving during inflation, then r wiil 
vary during inflation, leading to the variation of r/H’ [45]. In first-order inflation 
models the Higgs field plays a relatively passive role, remaining trapped in the false 
vacuum during inflation: further, it need not be weakly coupled, nor is the shape of 
its potential particularly relevant. 

By means of a conformal transformation extended inflation can be recast as slow- 
roIlover inflation with an exponential potential with In4 field playing the role of 
the inflaton [46]. In first-order inflation models there is another problem one has 
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to worry about: If l-'/H' does not change rapidly enough. then too many hubbies 
will be nucleated long before the end of inflation: rhese bubbles eventuali\. gow to 
astrophysical size and can have disastrous consequences ilarge an;sotropirs :n :Ae 
CBR. interference with primordial nucleosynthesis. and so 31-l :-I;:. To awtd .‘the 
big-bubble problem” in extended inflation -I must be less than about 20: thar There 
be an upper limit to L is not surprising since in the limit L - Y. Brans-Dicke goes 
to general relatii-it];. 

2.3.2 Viable models 

There is no standard model of inflation: nor is there a model of inflation without 
some flaw. There are a number of “proof of existence” models. models that successful 
implement inflation. but are only beautiful in the eyes of their creators. Of course. this 
situation should be viewed in light of our general ignorance about physics at energy 
scales >> lo3 CeV (most inflation models involve an energy scale of order 10L4 GeV I. 
Moreover. the same criticism-lack of a standard model-applies to baryogenesis. and 
applied to primordial nucleosynthesis until the early 1970’s! 

Slow-rollover. There are numerous viable models: I will mention but a representa- 
tive few. There is an almost decade old model based upon an ordinary GUT due to 
Shafi and Vilenkin [4g]. and Pi [49]. This model has the virtue that the inflaton field 
does more than cause inflation: it also breaks Peccei-Quinn symmetry and induces 
GUT symmetry breaking (by producing a negative mas+-squared for the GUT Riggs 
field). After inflation the Universe reheats to a temperature of order IO’GeV, and a 
scenario for baryogenesis is included. In short. it is a complete model. 

In passing, let me mention a similar model just proposed by Knox and myself [50]. 
The new twist is that the scale of inflation can be as small as the electroweak scale(!). 
and the inflaton field can be used to induce electroweak-symmetry breaking and other 
low-energy phenomena (e.g.. righthanded neutrino masses). In principle, this model 
can be tested in laboratory experiments. Of course. this model is only viable provided 
one believes that the baryon asymmetry of the Universe can be produced at the weak 
scale or below. 

There are many supersymmetric implementations of slow-rollover inflation [51); a 
particularly elegant one is that of Holman. Ramond. and Ross [52]. The superpoten- 
tiaf for their in&ton is very simple, W(o) = (A’/.Cf)(o - M)‘; here M = mpJ& 
and A is the GUT scale. In this model, the self coupling of the inflaton in its scalar 
potential is given by the fourth power of the ratio of the CUT to Planck scales. 
(A/W’, and the canonical small number arises because of the discrepancy between 
the GUT and Planck scales. The reheat temperature in this model is order 10s CeV. 
and the details of baryogenesis are spelled out. 

There is a model called (by the authors) .‘natural inflation” [53]. The primary 
purpose of this mode1 is to address the small self-coupling of the inflaton. To wit, the 
inflaton is a pseudo Nambu-Goldstone boson akin to the axion: a Nambu-Coldstone 
boson has an absolutely flat potential, i.e. is massless. and becomes a pseudo Nambu- 
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Goldstone boson due to explicit symmetry breaking. The potential. I’(O) = .\‘!I - 
cos(o//)], has two energy scales: / 
breaking and A z IO-’ 

c mpr, the scale of the spontaneous jvmmerr! 
f, the scale of explicit symmetry breaking (CCT SC&?\. i In 

the axion analogy. .I = .\ qcn 2 200 .LleV and f is the PQ Symmetry-breakrng scale. I 
Some superstring adherents have taken interest in this model rts superstring theories 
often have pseudo Sambu-Coldstone bosons with Planck-scale symmetry breaking. 

There is a broad class of slow-rollover models referred to ils chaotic inflation; they 
illustrate the simplicity of inflation and were pioneered by Linde [54l. The potentials 
for these models are not of the symmetry breaking variety as the minima are at o = 0: 
e.g.. V(o) = Ao’ or C’(rn~ = m’02/2. In chaotic inflation. the inflaton field begins far 
from the origin. m 2 .5mpr-the further the better. As with all slow-rollover models. 
there is a small. dimensionless number: X w 10-r’ or ms 2 10-‘smp,‘. No attempt 
is made to connect these models with particle physics. 

There are modeis where the inflaton field is not actually a scalar field: e.g., where 
it is related to the size of the compactified dimensions in models with extra dimensions 
[55], or is related to the scalar curvature 72 in higher derivative theories of gravity) 
[56]. 

The common undesirable feature of all slow-rollover models is a small, dimen- 
sionless number of order lo-‘?. typically the self coupling of the inflaton: as we shall 
discuss, this small number is necessary to guarantee density perturbations of the ap- 
propriate size. To ensure the stability of the flatness of the potential against quantum 
(radiative) corrections the inflaton must be weakly coupled to the “rest of the world.” 
and in this since. all the models mentioned are natural. However. weak coupling works 
at cross purposes with reheating and baryogenesis. Slow-rollover models liberate only 
a tiny fraction of the false-vacuum energy to radiation and have a relatively low reheat 
temperatures, which is problematic for baryogenesis as it must proceed after infla- 
tion. The second problem lies in the name “inflaton;” because the field responsible 
for inflation is so weakly coupled, without heroic efforts it is difficult to make it an 
integral part of a more encompassing particle physics theory. 

First-order. These models have the potentiai (no pun intended) to incorporate 
the best aspects of both slow-rollover and old inflation. Inflation is again inti- 
mately connected to a cosmological phase transition at a scale of order the GUT 
scale and no special flatness is required of the Higgs potential. Moreover, reheating 
proceeds via vacuum-bubble collisions which guarantees good reheating and a unique 
signature of first-order inflation, a background of gravitational waves proceeded by 
bubble collisions, Row w 10-s at a frequency determined by the scale of inflation. 
/GW -. 10’sHz(M/lO’zGeV) (571. 

The simplest first-order inflation model is extended inflation. First the good news: 
Bran+Dicke gravity exhibits conformal (scale) invariance (the Planck scale is replaced 
by a field). Conformal invariance is “the Hall&ark” of superstring theory, which has 
stimulated new interest in Brans-Dicke like theories. Now the bad news; in order 
to avoid “the big-bubble problem,” the Brans-Dicke parameter w must be less than 
about 20, while solar-system tests set a lower limit of about 500 [58]. In its simplest 
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form. extended inflation is not viable. Several vari;nts have been put forth :A:]!: the 
simplest fix IS to give the Brans-Dicke field a mass 146!. I .A mass for the Brans-Dlcie 
field anchors at the right value and makes the immune !o ;oiar-svstem tests.1 .-\n;- 
mass less than about 10”GeV and greater than a tin>, fraction of an e\~ will & 
Moreover. this simple fix involves something that strm 4 rheorlsts must do anvwav: 
break conformal invariance I the world is not conformaily invariant, it has a mul;,tude 
of energy scales). 

In sum. inflation provides a very attractive early I-niverse paradigm. \Iodeis 
of inflation are based upon well defined. albeit very speculative. physics at energ!, 
scales well below the Planck scale. At present there is no standard model. or even 
a particularly compelling model: there are. however. a variety of models that work. 
Given our generai ignorance about physics at energy scales > lo3 GeV. perhaps that 

should be enough for the time being. In any case. while elegance, simplicity. and 
mathematical beauty often provide guidance to the theorist, in the end. experiment 
and observation are the final arbiters. .As I will discuss toward the end. observations 
involving structure formation are starting to do just that, 

2.4 Initial Conditions: No-hair theorems 

Inflation is cosmologically attractive because it promises to account for our present 
nearly FRW space-time starting from very general initial conditions. Somewhat para- 
doxically, inflation is usually analyzed in the context of the isotropic and homogeneous 
FRW cosmology. I will now explain the appannt paradox and discuss to what extent 
inflation lessens the dependence of the present state of tie Universe upon its initial 
state. 

To begin consider the anisotropic but homogeneous Bianchi) models; the mean 
expansion rate of the Universe can be written as 

Ha c (g//a)’ = F + F(%.7ii; 

where x is the mean scale factor and p is the usual energy density and the function 
F accounts for the additional terms that arise due to anisotropy. In general, the 
furiction F decreases at least as rapidly as l/z*. that is. as rapidly as the spatial 
curvature term in the FRW cosmology or faster. The false-vacuum energy density 
appears in the energy density term and is ‘of course constant. Provided that F is 
positive,, the Universe will eventually become vacuum-energy dominated: once it does, 
the F(R,z) term will quickly decrease and become insignificant and the space time 
becomes isotropic.s This justifies the usual FRW analysis of inflation. 

‘There is one worry; namely chat the in&ton field will evolve 10 rhe mmxnum of its potentA 

before the vacuum-dominated phax begms. In general. this does no6 occur as anisotropy increases 

the expansion rate, and thus the friction term in the equation of motion for rhe in&ton: see 1591 

\ 
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Not all anisotropic space-tlmes will inflate: if F is sufficiently large and negative ,t 
wi)) prevent inflation; the simplest noninflating model is a very positively curved FRhi 
model that recoilapses before It can inflate. The stronglv positiveiv curved models 
preclude a true cosmological no-hair theorem: however. it has been shown that all 
spatially homogeneous. but anisotroprc models eventually inflate. except for the verv 
positively curved models [SO]. .And further. it has been shown that “smooth regions” 
of inhomogeneous models of sufficient size and that are negatively curved will inflate 
[61. 62). While not all spacetimes will inflate. the class of spacetimes that do is not 
special. but very generic [62]. Thus. inflation does indeed lessen the dependence of 
the present state of the Universe on its initial state. 

Does inflation render a generic space-time isotropic and homogeneous forever? 
The answer is clearly no: the most one can expect in an inhomogeneous space-time is 
that negatively curved regions inflate. Further. once inflation is over. inhomogeneity 
and anisotropy will “grow back.* Consider spatial curvature: if the Universe was not 
flat before inflation it will not be flat after inflation. However. inflation exponentially 
postpones the epoch when spatial curvature becomes important because the value 
of R after inflation becomes exponential close to unity. Likewise, in the exponential 
distant future our Hubble volume will become larger than the generic smooth patch 
created by inflation and we will in principle we able to see the inhomogeneity beyond 
our inflationary patch [63]. 

Finally, there are the initial data for the scalar field responsible for inflation itself. 
In first-order inflation. as in old inflation. this is a dynamical issue: the initial value 
of the scalar field is determined by thermal considerations. However. in slow-rollover 
inflation the story is very different: the initial value of the inflaton field (and its spatial 
and temporal derivatives) are not so determined, and at the classical level must be 
considered to be initial data. While this has become a subject unto itself, some 
very general statements can be made. First, the inflaton field must be smooth on a 
scale comparable to the Hubble radius, otherwise the energy density associated with 
spatial gradients will dominate over the vacuum energy preventing inflation. Second, 
the value of the scalar field must be small enough in models of “new inflation” or 
large enough in models of vchaotic inflation” so that it takes the field more than 60 
Hubble times to roil to the bottom of the potential. Finally, the initial velocity of 
the inhaton (i.e., d) must be small enough so that it does not rapidly speed to the 
bottom of the potential. For a given inflationary model. all of these considerations 
can be studied and quantitative statements made about the necessary initial data for 
the inflaton field [64]; further, attempts have been made using the wavefunction of 
the Universe to quantify the quantum expectation for the initial state of the inflaton 
field [SS]. 

In the final analysis it cannot be said that all initial spacetimes undergo inflation 
and become isotropic and homogeneous for all time; further, the initial data for the 
inflaton itself must now be considered. The strongest statement that one can make 
is to say that inflation greatly lessens the dependence of the present state of the 
Universe upon its initial state. In my mind, that’s no mean feat and inflation should 
be considered a great success. 
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3 Inflation: The Fundamentals 

[n this Section I discuss how to analyze an inflationary model. given the scalar p~jr-s 
tial. In two sections hence 1 will. work through a number of examples. The focus :v:il 
be on the metric perturbations-density fluctuations :66] and grawrv waves 167:- 
that arise due CO quantum fluctuations. and the CBR temperature anjsotropies that 
result from them.6 Perturbations on all astrophysically interesting scales. say 1 \fpc 
to lo4 Mpc. are produced during an interval of about 8 e-folds around .50 e-folds before 
the end of inflation, when these scales crossed outside the horizon during inflarion. 
I wiil show how the density perturbations and gravity waves can be related to three 
features of the inflationary potential: its value I &J, its steepness zse z lmpiC~‘/~‘)sc. 
and the change in its steepness z;,,, evaluated in the region of the potential where the 
scalar field wu about 50 e-folds before the end of inflation. In principle, cosmological 
observations, most importantly CBR anisotropy. can be used to determine the char- 
acteristics of the density perturbations and gravitational waves and thereby C&s. 210. 
and rko. 

Ail viable models of inflation are of the slow-rollover variety. or can be recast as 
such 1681. In slow-rollover inflation a scalar field that is initially displaced from the 
minimum of its potential rolls slowly to that minimum. and as it does the cosmic- 
scale factor grows very rapidly. Once the scalar field reaches the minimum of the 
potential it oscillates about it. so that the large potential energy has been converted 
into coherent scalar-field oscillations. corresponding to a condensate of nonrelativistic 
scalar particles. The eventual decay of these particles in:o lighter particle states and 
their subsequent thermalization lead to the reheating of the tiniverse to a temperature 
TnH z 6, where P is the decay width of the scalar particle [42. 681. Here, I 
will focus on the classical evolution of the inflaton fieid during the slow-roll phase 
and the .smaIl quantum fluctuations in the inflaton field which give rise to density 
perturbations and those in the metric which give rise to gravity waves. 

To begin, let us assume that the scalar field driving inflation is minimally coupled 
so that its stress-energy tensor takes the canonical form. 

T,,, = @%Q - Cg,,; (29) 

where the Lagrangian density of the scalar held C = fa,oa”o - V(P). If we make 
the usual assumption that the scalar field o is spatially homogeneous, or at least 
so over a Hubble radius, the stress-energy tensor takes the perfect-fluid form with 
energy density, p = $j’+ V(b), and isotropic pressure. p = io’ - V( 6). The classical 
equations of motion for o can be obtained from the first law of thermodynamics, 
d(R’p) = -pdP, or by taking the four-divergence of r”‘: 

4 + 3Hi + C”(0) = 0: I301 

blsocurvature perturbations CM arise due to quantum fluctuations in other mapsless fields. e.g. 

the axion field. if it exists [69] 
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the To term responsible for reheating has been omitted since we shall only be inter. 
ested in the slow-rollover phase. In addition. there 1s the FrIedmann equation. ;\~h:ch 
governs the expansion of the Cniverse. 

H2 = & (l.!oi f ;q 2 y;‘. 

where we assume that the contribution of all other forms of energy density. e.g.. 
radiation and kinetic energy of the scalar field. and the curvature term (k/P) are 
negligible. The justification for discussing inflation in the context of a Aat FRIC 
model with a homogeneous scalar field driving infiation were discussed earlier (and 
at greater length in Ref. !70]): including the o kinetic term increases the righthand 
side of Eq. (31) by a factor of (1 + r’/lSx). a small correction for viable models. 

In the next Section f will be more precise about the amplitude of density perturba- 
tions and gravitational waves: for now. let me briefly discuss how these perturbations 
arise and give their characteristic amplitudes. The metric perturbations produced in 
inflationary models are very nearly “scale invariant.” a particularly simple spectrum 
which was first discussed by Harrison and Zel’dovich (711. and arise due to quantum 
fluctuations. In deSitter space all massiess scalar fields experience quantum fluctu- 
ations of amplitude H/27. The graviton is massless and can be described by two 
massless scalar fields. h,., = J?%??uI+.~ (+ and x are the two polarization states). 
The inflaton by virtue of its flat potential is for all practical purposes massless. 

Fluctuations in the inflaton field lead to density fluctuations because of its scalar 
potential, 6p - H.V’; as a given mode crosses outside rhe horizon, the density per- 
turbation on that scale becomes a classical metric perturbation. While outside the 
horizon. the description of the evolution of a density perturbation is beset with sub- 
tleties associated with the gauge freedom in general relativity; there is. however. a 
simple gauge-invariant quantity, C 2 6p/(p + p), which remains constant outside the 
horizon. By equating the value of C at postinflation horizon crossing with its value 
as the scale crosses outside the horizon it follows that (6~/~)Hon - HV’/$ (note: 
p + p = $); see Fig. 7. 

The evolution of a gravity-wave perturbation is even simplerl it obeys the massless 
Klein-Gordon equation 

i;; + 3Hir; + k’h;/ R2 = 0: (32) 

where k is the wavenumber of the mode and i = +. x. For superhorizon sized 
modes, k ,$ RH, the solution is simple: h; = const. Like their density pertur- 
bation counterparts, gravity-wave perturbations become classical metric perturba- 
tions as they cross outside the horizon; they are characterized by an amplitude 
h; 2 X/iGZ(H/2ir) v H/mpl. At postinflation horizon crossing their ,amplitude 
is unchanged. 

Finally, let me write the horizon-crossing amplitudes of the scalar and tensor 
metric perturbations in terms of the inflationary potential. 

(b'/P)HOR.A = CS (33) 
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h HOR.‘, 

where (6P/P)non..1 is the amplitude of the density perturbation on the scale \ ,.~hen 
it crosses the Hubble radius during the post-inflation epoch. hnOnI is the dimension. 
less amplitude of the gravitational wave perturbation on the scale .\ when II crosses 
the Hubble radius. and cj. cr are numerical constants of order unit)-. Subscript 1 
indicates that the quantity involving the scalar potential is to be evaluated when the 
scale in question crossed outside the horizon during the inflationary era. The met. 
ric perturbations produced by inflation are characterized by almost scale-invariant 
horizon-crossing amplitudes: the slight deviations from scale invariance result from 
the variation of L’ and V’ during inflation which enter through the dependence upon 
t,. [In Eq. (33) I got ahead of myself and used the slow-roll approximation isee 
below) to rewrite the expression, (~~/~)HoR.A 2 HL”/o. in terms of the potential 
only.] 

Eqs. (30-33) are the fundamental equations that govern inflation and the produc- 
tion of metric perturbations. It proves very useful to recast these equations using 
the scalar field as the independent variable: we then express the scalar and tensor 
perturbations in terms of the value of the potential. its steepness, and the rate of 
change of its steepness when the interesting scales crossed outside the Hubble radius 
during inflation. about i0 e-folds in scale factor before the end of inflation. defined 
by 

I’sa q V(Gho): 
IIo ~ mPlV’(md 

I;(ho) : 
L;O = 

mplI”‘(mso) _ w[V’(odl’ 
I ‘, .oso) WPm) 

To evaiuate these three quantities 50 e-folds before :he end of inflation we must 
find the value of the scalar field at this time. During the inflationary phase the m 
term is negligible (the motion of 4 is friction dominated). and Eq. (30) becomes 

(35) 
-V’(o) 

0% 3H : 

this is known as the slow-roll approximation [i?]. While the slow-roll approximation 
is almost universally applicable, there are models where the slow-roll approximation 
cannot be used; e.g., a potential where during the crucial Y e-folds the scalar field 
rolls uphill, “powered” by the velocity it had when it hit the incline. 

The conditions that must be satisfied in order that o be negligible are: 

IV”/ < 9H2 2 24rC’/mp1’; (36) 

II/ = IV’rnP,/VI c JG 137) 

The end’of the slow roll occurs when either or,both of these inequalities are saturated. 
at a value of o denoted by oend. Since H 5 R/R. or Hdt = dln R. it follows that 

8n V(o)do 
dlnR= - 

8ndo 

mptr -V’(@) = 
-- 

m 2 
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sow express the cosmic-scale factor in terms of IS ~aiue at the end of Inflation. R-,,. 
and the number of e-foldings before the end o,i inflation. .VI 31. 

R = exp(- .Vi 0 1; Rend 

The quantity .V(OI is a time-like variable whose value at the end of inflation is zero 
and whose evolution is Toverned b> 

d.V 3x 

o=m,,r, 

Csing Eq. (39) we can compute the value of the scalar field j0 e-foids before the end 
of inflation (s oiOj: the values of t;o. ~50. and zLO follow directly. 

;\s o rolls down its potential during inflation its energy density decreases. and so 
the growth in the scale factor is not exponential. By using the fact that the stress- 
energy of the scalar field takes the perfect-fluid form. we can solve for evolution of the 
cosmic-scale factor. Recall. for the equation of state p = ?p. the scale factor grows 
as R I P. where q = ?/:I( I + -IL Here. 

$2 - C’ 2 - 48r 
= 

$3’ t c 9 + 4th; 

1677 
Q = ;+- 

I1 

Since the steepness of the potential can change during inflation, y is not in general 
constant: the power-law index q is more precisely the log.arithmic rate of the change 
of the logarithm of the scale factor. q = din R/dint. 

When the steepness parameter is small, corresponding to a very Aat potential. 7 
is close to -1 and the scale factor grows as a very large power of time. To solve 
the horizon problem the expansion must be “superluminal” (A > 0), corresponding 
to q > 1. which requires that I’ < 24x. Since j$‘/V = z2/48n. this implies that 
I ” V 4) < f, justifving neglect of the scalar.field kinetic energy in computing the ,@I ( 
expansion rate for all but the steepest potentials. (In fact there are much stronger 
constraints; the COBE DMR data imply that n 2 0.5. which restricts z:, 5 4lr. 
$‘,‘lV 5 &, and p 2 4.) 

Next, let us relate the size of a given scale to when that scale crosses outside the 
Hubble radius during inflation, specified by .Y,( A). the number of e-folds before the 
end of inflation. The physical size of a perturbation is related to its comoving size. 
x phy, = RA: with the usual convention. &o&Y = 1. the comoving size is the physical 
size today. When the scale A crosses outside the Hubble radius RIX = H;‘. We 
then assume that: j 1) at the end of inflation the energy density is .,M’ 2 V(0.d); (2) 
inflation is followed by a period where the energy density of the Universe is dominated 
by coherent scalar-field oscillations which decrease as Rw3; and (3) when value of the 
scale factor is & the Universe reheats to a temperature TR, z m and expands 
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adiabatically thereafter. The “matching equation” that relates .\ and ,v,! pi, !j: 

R 
.\ = CO+~;L _ Rtodw RRH Rmci H-> 

1 &H Rend RI ’ 
.~, 1.. 

.idlabaric expansion since reheating implies Rtodar, RRH 2 TRHj2,:j k:: and the de. 
cay of the coherent scalar-field oscillations impiies I RRH; Rend)3 = ,.~;~nH,‘, ff 
we define i = inI R,,dI’Rt 1; ln(t,.a/t, J. the mean power-law index. :t foiloir-s that 
1 R,,~/R,)H;’ = expl.V,Iq - ! \!qiIf,L. and Eq. iJ?i becomes 

f .L’, , ,\ ) = - 
4-i 1 

43 + In A \lpc - 3 z Int.M/lO” Gel.1 - i lnir~n/lO” CeL’i : 
I 

( 4 ‘3 ‘1 

In the case of perfect reheating, which probably only applies to first-order inflation, 
TRH 2 .M. 

The scales of astrophysical interest today range roughly from that of galaxv size. 
x - !Jpc. to the present Hubble scale. H{’ s LO“ Jlpc: up to the logarithmic 
corrections these scales crossed outside the horizon between about .V,(X) z 4s and 
.Vr( .\ I 2 .56 e-folds before the end of inflation. That is. the inlerval o/ mflat~on thaf 
determines its all observable consequences co~‘ers only about 8 e-fo1d.s 

Except in the case of strict power-law inflation q varies during inflation this means 
that the C,R,,.JR, 1~4;’ factor in Eq. l,42) cannot be written in closed form. Taking 
account of this. the matching equation becomes a differential equation. 

d 1” x Mpc q(.V,) - I; 

dN = q(.v,) 

subject to the “boundary condition:” 

hX,&jp = -48 - i in(h/10’4GeV) f h h[~~H/lo”Gev) 

for :V, = 0, the matching relation for the mode that crossed outside the Hubble radius 
at the end of inflation. Equation (44) allows one to obtain the precise expression for 
when a given scale crossed outside the Hubble radius during inflation. To actually 
solve this equation, one would need to supplement it with the expressions d;V/do L 
6n~mptz and 9 = 16*/t*. For our purposes we need only know: (1) The scales of 
astrophysical interest correspond to .V, 5 “70 + A.” where for definiteness we will 
throughout take this to be an equality sign. (2) The expansion of Eq. (4.&j about 
N, = 50, 

hV,(A) = =-$ 
( 1 

11” x up<: ilij 

which. with the aid of Eq. (39), implies that 

A+$= e 
( j qso 2 lXMpc C-16) 
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LVe are now ready roeupress the perturbations in terms of Ijo. ziO, and rio, Flrsr. 
we must solve for the value of o. j0 e-folds before rhe end of intiat:on. To ,io so ‘xr 
use Eq. 139), 

.\‘(oroj = j0 = 2.L 
mpll 

iTI 

Sext. ,.vith the help of Eq. [AS) we expand the potential I’ and its steepness I about 

of course these expansions only make sense for potentials that are smooth. Lc’e note 
that additional terms in either expansion are Olo:l and beyond the accuracy we are 
seeking. 

4’~ recall the equations for the amplitude of the scalar and tensor perturbations. 

~,~L’ip~HOR.,i = CS -: 

hioR..\ = CT 

\‘I/’ 

i ) 
- : 
mm’ , 

(50) 

(51) 

where subscript 1 means that the quantities are to be evaluated where the scale X 
crossed outside the Hubble radius, .V,(X) e-folds before the end of inflation. The 
origin of any deviation from scale invariance is clear: For tensor perturbations it 
arises due to the variation of the potential: and for scaiar perturbations it arises due 
to the variation of both the potential and its steepness. 

Using Eqs. (45-50) it is now simple to calculate the power-law exponents CIS and 
~7 that quantify the deviations from scale invariance. 

40 4sa 

crr = 16~ qso - 1 
do --z-- 
1677’ 

mPd5, Go 
2 

as = q- 
=?I mPl4, ---~----; 

877 WI - 1 !6X 3x 

(32) 

i,.53) 

where 

I 16x 1677 
(.X) 

(36) 



The spectral indices 0, are defined ass. ag = :dlnl~piPiHoR,;!din,~~,,,:j, an,! Q7 = 
jdlnhHoR.l/dInXMp~;io. and in general vary siowl~ with scale. Sate too [ha: rnz 
deviations from scale invariance. quantified by 03 and 0~. are of the order a,i :i,. 
mp,.r;,. I n the expressIons aDove we retained only lowest-order terms ;n cl, o, ,, Tie 
nezt.order contributions to the spectral indices are Oia; I: those to Lhe amiilt>~ides 
are %!cr: I and are given two sections hence. The justltication for trunca:ins :he 
expansion at !owest order is that the deviations from scale Invariance are expecTed (13 
be small-and are required by astrophyslcally data CO be small. 

.As I discuss in more derail two sections hence. the more intuitive power-la;v indices 
05. oT are related to the indices that are usualI! used to describe the power spec:ra 
of jcaiar and tensor perturbations. P,-(k) = ;6,/’ = .Ak’ and PT.(k) = $,;? = .qTky:, 

R = ,-&s= ,-:‘O+mplI;,: 
dx 4x 

is,, 

rzr = 
:I0 

-‘jar = -- 
8r 

1 ,j ,S , 

CBR temperature fluctuations on large-angular scales (0 2 1”) due to metric 
perturbations arise through the Sachs-Wolfe effect: very roughly, the temperature 
fluctuation on a given anguiar scale 0 is related to the metric fluctuation on the 
length scale that subtends that angle at last scattering, X h lOOh-’ Mpc(B/deg). 

(‘), - (?),,R.,,’ r60i 

161) 

where the scalar and tensor contributions to the CBR temperature anisotropy on 
a given scale add in quadrature. Let me be more specific about the amplitude of 
the quadrupole CBR anisotropy. For small a,-. o T the contributions of each co the 
quadrupole CBR temperature anisotropy: 

F Lie 

z 45 mpI’r<o’ 162) 

s 0.61$; 163) 

: = (aT~To)i-T z o,2yI~ : 
s- (AT/To)&, 50 (64) 

where expressions have been evaluated to lowest order in z:, and mplz;,. These 
quantities represent the ensemble averages of the scalar and tensor contributions to 
the quadrupole temperature anisotropy, which in terms of the spherical-harmonic 
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expansion of the CBR temperature anisotropy on the sky are given by j: a:, J. 4:~ 
Further. the scalar and tensor contributions LO :he meaja~d quadrllpoie anl~or:op! 
add in quadrature. and are subject to .-cosmic wlance.“ Cosmic iartance :e<c:s tu 
the dispersion in the vaiues measured by different ohser\~ers in the Iln~ver~e. I 

Before going on. some general remarks ;:a]. The steepness parameter I$ must 
be iess than about 247 to ensure superluminal expansion. For “swep” potent~ais. 
the expansion rate 1s “slow.” i.e.. qsa closer to unity. the gravity-wave contrlburion 
lo the quadrupole CBR temperature anisotropy becomes comparable to. or sreater 
than. that of density perturbations. and both scalar and tensor perturbations evhlbit 
significant deviations from scale invariance. For .-flat” potentials. i.e.. small 150. the 
expansion rate is “fast.” i.e.. ~50 > 1. the gravity-wave contribution to the quadrupoie 
CBR temperature anisotropy is much smaller than that of density perturbarions. and 
the tensor perturbations are scale invariant. Cnless the steepness of the potential 
changes rapidly, i.e.. large I;,,, the scalar perturbations are also scale invariant. 

3.1 Metric perturbations and CBR anisotropy 

I was purposefully vague when discussing the amplitudes of the scalar and tensor 
modes. except when specifying their contributions 10 the quadrupole CBR temper- 
ature anisotropy; in fact. the spectral indices c~s and 07, together with the scalar 
and tensor contributions to the CBR quadrupole serve to provide all the information 
necessary. Here I will fill in more details about the metric perturbations. 

The scalar and tensor metric perturbations are expn:;ded in harmonic functions. 
in the flat Universe predicted by inflation. plane waves. 

where h,, = R-‘g,, - q,,“, & is the poiarization tensor for the gravity-wave modes. 
and i = +, x are the two polarization states. Everything of interest can be computed 
in terms of hi and 6k. For example, the rms mass fluctuation in a sphere of radius 
r is obtained in terms of the window function for a sphere and the power spectrum 
ps(k) G (/6k(‘) (see below), 

((6M/.W*)r = & ~--hW)l’ PdkW: 
where J,(Z) is the spherical Bessel function of first order. If Ps(k) is a power law. 
it follows roughly that (6M/M)’ - k316klZ. evaluated on the scale k = r-L This is 
what I meant by (6p/p)~o~,,,: the pills mass fluctuation on the scale X when it crossed 
inside the horizon. Likewise, by h~o~.~ I meant the rms strain on the scale X as it 
crossed inside the Hubble radius, (hH0R.h)’ - k’(hll*. 
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fn the previous discussions I havechosen to specrfy the metric perturbations for :he 
different Fourrer modes when they crossed InsIde the horizon. rather than at a corr,mon 
time. I did so because scaie invariance is made manifest. as the scale Lndependence 
of the metric perturbations at oost-inflation horizon crossing. Recall. :n the case 
of x.&r perturoatlons ;dp/~i~o~ is up to a numerlcai factor the Auc:uar:on :n .he 
Sewtonian potential. and. 0~ specifytng the scalar perturbations at horlron crossing. 
we avoid the discussion of scalar perturbations on superhorizon scales. ;rhich IS‘ beset 
by the subtletles associated with :he gauge noninvariance of &k. 

ft is. however. necessary to specify the perturbations at a common time to carr! 
out most calculations: e.g.. an V-body simulation of structure formation or the cdl- 
culation of CBR anisotropy. To do so. one has to take account of the evolution of 
the perturbations after they enter the horizon. ;\fter entering the horizon tensor 
perturbations behave like gravitons. with hk decreasing as f?’ and the energy den- 
sity associated with a given mode. pc w m~t’kS~hk~*/R2. decreasing M R-‘. The 
evolution of scalar perturbations is slightly more complicated: modes that enter the 
horizon while the I’niverse is still rad-iatlon dominated remain essentially constant 
until the Universe becomes matter dominated (growing only logarithmically): modes 
that enter the horizon after the Cniverse becomes matter dominated grow as the 
scale factor. IThe gauge noninyariance of & is not an important issue for subhorizon 
size modes: here a Newtonian analysis suffices. and there is only one growing mode, 
corresponding to a density perturbation.) 

The method for characterizing the scalar perturbations is by now standard: The 
spectrum of perturbations is specified at the present epoch (assuming linear growth 
for all scales): the spectrum at earlier epochs can be obtained by multiplying hk by 
R(t)/R,,+. The inflationary metric perturbations are gaussian: thus & is agaussian. 
random variable. Its statistical expectation value is 

(6k &) = ~~(k)(:!?-l~6’~‘1 k - q): 

where the power spectrum today is written as 

i6d) 

&(k) E .4k”T(ki2: (69) 

n = I-20s (= 1 for scale-invariant perturbations). and r(k) is the “transfer function” 
which encodes the information about the post-horizon crossing evolution of each mode 
and depends upon the matter content of the Universe. e.g.. baryons plus cold dark 
matter, baryons plus hot dark matter, baryons plus hot and cold dark matter. and 
so on. The transfer function is defined so that T(k) + 1 for k - 0 (long-wavelength 
perturbations); an analytic approximation to the cold dark matter transfer function 
is given by [74] 

T(k) = 
In(1 + 2.34q)/2.34q 

[l + (3.89q) + (l6.lg)r + (5.46q)‘+ (6.;19)4]114’ 
(70) 

where 9 = k/(&h* UPC-‘). Inflationary power spectra for different dark matter 
possibilities are shown in Fig. 9. 
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Figure 9: Power spectra for cold dark matter (CDM). hot dark matter (RDM), mixed 
dark matter (.MDLM = 30% hot + 70% cold), and cold dark matter with a cosmological 
constam(ACDM = 20% CDM + 80% .I). ,411 spectra are normalized to the COBE 
DMR quadrupole temperature anisotropy; h = 0.5 for all models except ACD,M 
(h = 0.8). 

The overall normalization factor 

where the 0(&) correction to A has been included [75]. The quantity nr = -2or = 
-z:o/gs, n - 1 = -2as = no + z’,/4rr. ka is the comoving wavenumber of the scale 
that crossed outside the horizon 50 e-folds before the end of inflation. All the form&s 
below simplify if this scale corresponds to the present horizon scale, specifically, k5,, = 
HO/~. (Eq. (71) can besimplified by expanding f’(z+z) = r(3/2)(1+1(2-2ln2-7)], 
valid for ItI Q: I; 1 2 0.577 is Euler’s constant.] 

From this expression it is simple to compute the Sachs-Wolfe contribution of scaiar 
perturbations to the CBR temperature anisotropy; on angular scafes much greater 
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than about 1’ (corresponding to muitrpoles i K 100) it E the dominant contrlbutlon. 
If we expand the CBR temperature on the sky in spherical harmonics. 

ii-(*, r31 :=X,m=! 

To = :,L 
ai,~;,ie.‘m 

where To = 2.73 k: is the CBR temperature today. then the ensemble expectation ior 
the multipole coefficients is given by 

c,,a,,,2: = (7% 

z 
.4H3’” ?A-” 0 l-i/ f fn - ;ir13 - n) 

I6 r(i - + c iqri:! - +)p’ (7-r) 

where r,, =Z 2H;’ is th e comoving distance to the last scattering surface, and this 
expression is for the Sachs-CVoife contribution from scalar perturbations only. For 
R not too different from one. the ensemble expectation for the quadrupole CBR 
temperature anisotropy is 

AT i 
t 1 

.5ia2mi2 327 - 
To Q-S 

s - = 1J mp;jr, i&d-” 
In 

(75) 

[By choosing k,o = ~0’ = iHo. the last factor becomes unitv.) 
The ensemble expectation values for the multipole amplitudes are often referred 

to as the angular-power spectrum. Further. the rrn~ Iemperature fluctuation on a 
given angular scale is related to the multipole amplitudes 

- 12(laiml’) for i 2: 2o0°/e. (76) 

The procedure for specifying the tensor modes is similar. cf. Refs. [T6, 771. For 
the modes that enter the horizon after the Cniverse becomes matter dominated. k 5 
O.lhr Mpc, which are the only modes that contribute significantly to CBR anisotropy 
on angular scales greater than a degree, 

hi(+) = a’(k) :“;i;‘) ; ( ) 
where T = to(t/to)“s 1s conformal time. [For the modes that enter the horizon during 
the radiation-dominated era, k 2 O.lhr Mpc-‘. the factor 3j,(k+)/kr is replaced by 
Jo(kT) for the remainder of the radiation era. In either case, the factor involving the 
spherical Bessel function quantifies the fact that tensor perturbations remain constant 
while outside the horizon, and after horizon crossing decrease as R-l.1 

The tensor perturbations too are characterized by a gaussian, random variable. 
here written as a’(k): the statistical expectation 

(t&h;) = Pt(k)(2trj66’31(k -q)&; (78) 
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where the power spectrum 

! I 

2 
l+(k) = .A&--3 3’;iy : 

.4T = VW iI + $Ti(I-!; - +tT!j’ k;o~r, 3 
:?a mp,’ ‘“T(r(; Jj2 

where the U(a,j correction to .-II has been included. Note that nr = -ior 1s zero 
for scale-invariant perturbations. 

Finally. the contribution of tensor perturbations to the muitipole amplitudes. 
which arise solely due to the Sachs-Wolfe effect [28. XI. 771. is given by 

where 

k”++’ .-tT IE(k)l’dk: 

h(k) = -1: dr kr j,jkri [ d;y;;;] ; 

and pD = ro/(l+zD)“2 s re/35 is the comoving distance to the horizon at decoupling 
(= conformal time at decoupling). Equation (81) is approximate in that very short 
waveiength modes. kre >> 100. that crossed inside the horizon before matter-radiation 
equality have not been properly taken into account: to take them into account. the 
integrand must be multiplied by a transfer function. 

T(k) z 1.0 + 1.44(k/k~) + 2.54(11kEq)‘; 183) 

where k~q z H0/(2fi - .‘)RkG is the scale that entered the horizon at matter 
radiation equality [78]. In addition, for 1 2 1000, the finite thickness of the last- 
scattering surface must be taken into account. 

The tensor contribution to the quadrupole CBR temperature anisotropy for nr 
not too different from zero is 

AT ’ ( > Sla4 
T 

s- 1: 0.61 
0 Q-T 4r 3 (ksoro)-“f; (84) 

where the integds in the previous expressions have been evaluated numerically. 
Both the scalar and tensor contributions to a given multipole are dominated by 

wavenumbers kro - 1. For scale-invariant perturbations and small 1. both the scalar 
and tensor contributions to (1+~)1(~a~m/2) are approximately constant. The contribu- 
tion of scalar perturbations to (1 + ~)*(~a~,,,lZ) begins to decrease for I m 150 because 
the scalar contribution to these multipoles is dominated by modes that entered the 
horizon before matter domination (and hence are suppressed by the transfer function). 
The contribution of tensor modes to (I + ~)‘(lar,,,/s) begins to decrease for I m 30 be- 
cause the tensor contribution to these multipoles is dominated by modes that entered 

43 



A 
?!- 

e 
23 

5 

NJ 
V 

OJ, 

2 

1 

.5 

.2 

I I I I II I I I I lr 

I I I Ill I I I I I II, .l 
2 5 10 20 50 100 

1 
Figure 10: Scalar and tensor contributions to the CBR multipole moments: 
l)(~a~,~2)/6(la~,Iz) for the scalar and 1(f + f)(ia,,,i’)/5( *I~/‘) for the tensor 
censor contribution begins to fall off for I -, ‘30: here n - ; = nr = 0. zogc = 
and h = 0.5 (from [79]). 
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the horizon before decoupling (and hence decayed as R-’ until decoupling). Figure 
10 shows the contribution of scalar and tensor perturbations to the CBR anisotropy 
multipole amplitudes (and includes both the tensor and scalar transfer functions); 
the expected variance in the CBR multipoles is given by the sum of the scalar and 
tensor contributions. 

3.2 Worked examples 

In this Section I apply the formalism developed in the two previous sections to four 
specific models. So that I can. where appropriate. solve numerically for model param- 
eters, I will: (1) Assume that the astrophysically interesting scales crossed outside the 
horizon 50 e-folds before the end of inflation: and (2) Use the COBE DMR quadrupole 
measurement, ((LX”)~)“~ zz 16i2rK [Ill, t o normalize the scalar perturbations; us- 
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ing Eq. (62) this implies 

c;, =z 1.6 x 10-l’ mp,’ I$. $,j, 

Of course it is entirely possible that a significant portion oi the quadrupole anisorroph 
is due to tensor-mode perturbations. in which case this normalization must be reduced 
by a factor of (1 + T/S)-‘. .And. it is straightforward to change “50” to the number 
appropriate to a speafic model. or to normahze the perturbations another way. 

Before going on let us use the COBE DMR quadrupole anisotropy to bound the 
tensor contribution to the quadrupole anisotropy and thereby the energy density that 
drives inflation: 

V,, 5 6 x LO-%,a,‘. 1861 

Thus. the tensor contribution to the CBR quadrupole implies that the vacuum energy 
that drives inflation must be much less than the Planck energy density, strongly 
suggesting that inflation is not a quantum-gravitational phenomenon. 

3.2.1 Exponential potentials 

There are a class of models that can be described in terms of an exponential potential, 

V(~J) = Voexp(-&/mpl). (87) 

This type of potential was first invoked in the context of power-law inflation [SO], and 
has recently received renewed interest in the context of extended inflation [44]. In 
the simplest model of extended, or first-order, inflation. that based upon the Brans- 
Dick-Jordan theory of gravity 1441, j is related to the Brans-Dicke parameter: 3* = 
64x/(2~ + 3). 

For such a potential the slow-roll conditions are satisfied provided that p2 5 24~: 
thus inflation does not end until the potential changes shape. or in the case of extended 
inflation, until the phase transition takes place. In either case we can relate & to 

8a 
N(&) = 50 = - 

/ 
k-r Vdb 

-’ 
mP12 *lo -V” 

* ho = a&d - 500/8n. (88) 

Since &,d is in effect arbitrary, the overall normalization of the potential is irrelevant. 
The two other parameters, zs,, and &, are easy to compute: 

f$J = -J: r& = 0 

Using the COBE DMR normalization, we can relate V,,, and 3: 

(89) 

V,, = 1.6 x II+” mp,?. 190) 

Further. we can compute q, QS, OT, and T/S: 

q = 16x/& TfS = 0.28U’; OT = OS = l/(q - 1) ‘5 #/16*. (91) 

Yote. for the exponential potential. q, cry = af are independent of epoch. In the case 
of extended inflation, Q~ = 0~ = 4/(2w + 3): since w must be less than about 20 [47], 
this implia significant tilt: ~5 = QI 2 0.1. 
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3.2.2 Chaotic inflation 

These models are based upon a very jimpie potentlai: 

I’(01 = cm’: :S”i 

h = -I corresponds to Linde‘s original model of chaotic inflation and u is dimensIonless 
@). and b = 2 is a model based upon a massive scalar field and m2 = la [SI‘. In 
these modeis o is initially displaced from o = 0. and inflation occurs as o siowly’rolls 
to the origin. The value of o..d is easily found: o:,,,, = b( b - 1 lmpl’/??r. and 

.V(osoJ = .50 = 193) 

* Q:,/~PI’ = SOb/dn + b’l48n z jObibs; (94) 

the value of $50 is a few times the Planck mass. 
For purposes of illustration consider b = 4: Oend = mpl/& z 0.4mpl. oIo s 4mp,. 

oa6 z 3.84mp,, and rnSA 2 4.16mpl. In order to have sufficient inflation the initial value 
of o must exceed about 4.2mpi: inflation ends when o % O.?mp,; and the scales of 
astrophysical interest cross outside the horizon over an interval Aai s 0.3mpl. 

The values of the potential. its steepness. and the change in steepness are easily 
found: 

mP& = 
-4n 
-; 
50 (95) 

qm = ‘LOO/b; l-1.5’ = 0.076; q 2 b/200: OS = QT + 0.01. 196) 
Unless b is very large, scalar perturbations dominate tensor perturbations [82], aT, 
~1s are very small. and q is very large. Further. when ctT, ~1s become significant, they 
are equal. Using the COBE DMR normalization we find: 

a = 1.6 x 10-“b’-6’2(4n/50)b’1+’ mp,+b, 197) 

For the two special cases of interest: b = 4. D = 6.4 x lo-“; and b = 2. mz s ~?a = 
2.0 x lo-%zp,*. 

3.2.3 New inflation 

These models entail a very flat potential where the scalar field rolls from m =z 0 to 
the minimum of the potential at 0 = o. The original models of slow-rollover inflation 
[83) were based upon potentials of the Coleman-Weinberg form 

v(d) = Bo’/? + Bo’ 
I 

1 
In(02/a’) - - 

2 1 ; 198) 
where E is a very small dimensionless coupling constant. Other very flat potentials 
also work (e.g., V = V, - a.9’ + ,&’ [72]). As before we first solve for @so: 

&In 
iV(r$,) = j0 = - 

I 

Qs Vdh 
* m:, = 

d 

md v’; 100) In(&/Oz)lm~~z’ (99) 
*WI 
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where the precise value of oend 1s not rebant. only the fact that it is much larger 
than o.,e. Provided that d 5 mp,, both ow and o.,,~ are much less than Q: w then 
find 

L~ko z Bo’j?: / IO01 

mp& 2 -%a/ 100: qso = 
2.j x 10'1 In(o~,/o'l! mp, a 

( 1 
- 

x2 > I: 
0 ,101) 

1 
asir--1: CrT = 0s + 0.03; 

T 

QSO 7’. 
(102) 

Provided that Q 5 mpl. ~50 is very small: this means that Q is very large. gravity- 
waves and density perturbations are very nearly scale invariant. and T/S is small. 
Finally. using the COBE DMR normalization, we can determine the dimensionless 
coupling constant E: 

B z 6 x 10-“/~ln(o~,/az)/ z :I x 10-‘5. ( 103) 

3.2.4 Natural inflation 

This model is based upon a potential of the form [.53] 

V(Q) = .I’ [ 1 t cos( o/f)] (104) 

The flatness of the potential (and requisite small couplings) arise because the o par- 
ticle is a pseudo-Nambu-Goldstone boson (j is the scale of spontaneous symmetry 
breaking and A is the scale of explicit symmetry breaking; in the limit that A - 0 
the o particle is a massless .Yambu-Goldstone boson). ft is a simple matter to show 
that omd is of the order of rf. 

This potential is difficult to analyze in general: however, there are two limiting 
regimes: (i) / Z% mpt; and (ii) f S mpt [z?]. In the first regime, the 50 or so relevant 
e-folds take place close to the minimum of the potential. o = +f, and inflation can 
be analyzed by expanding the potential about o = o. 

V(e) 5 m’c,‘/.‘: (105) 

m’ = .4’lf2; L‘=0-0. (106) 

In this regime natural inflation is equivalent to chaotic inflation with m* = A’/ f2 2 
2 x lo-%tp,*. 

In the second regime, f s mp(, inflation takes place when m 5 A/. so that we can 
make the following approximations: V z 2.1’ and I” = -:I’@/ f ‘. Taking @end w rf. 
we can solve for X(o): 

=f Vdm - 5 16nmpl’ 
-V’ - f2 M*fld); (107) 
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from which it is clear that achieving 50 e-folds of inflation places a lower bound iii :, 
very roughly f 2 mpii :Y?. 531. 

.Vow we can solve for ojO. lj0. ii0, and r& 

050/Y/ 2 expl -;;0mpl’,/16T/‘! 5 01lJ,l~: I: ,o 2 L.\‘: ; l,j 5 

7 22 

2 

z;o 2 ; f 5 c?(O.l): 

1 

I\,>-- ( 

w 

- 2 f ) 

Losing the COBE DMR normalization. we can relate .\ to j/mpi: 

.\/mpl = 6.7 x lo-’ exp(-5mp,‘/ 16nj’). i 1lOi 

Further. we can solve for T/S;. UT. and ~15: 

or = ~~(~~~)=~(~)1(~)2ao.l: (112) 

--%L 1 
a’ = 161 qso - 1 ( 

~zp+z+!&)2: (113) 

qw=6+-)*(&j2>: (114) 

11111 

Regime (ii) provides the exception to the rule that os s or and large os implies 
large T/S. For example, taking f = mpl/2. we find: 

u&f - 0.06; zw - 0.06: & = -2: Q50 - 10': (llj) 

CLj- - lo-‘; ‘1s - 0.08: T/S w 1O-3. (116) 

The gravitational-wave perturbations are very nearlv scale invariant. while the density 
perturbations deviate significantly from scale invariance. I note that regime (ii). i.e.. 
/ 5 mpi, occupies only a tiny fraction of parameter space because f must be greater 
than about mpi/3 to achieve sufficient intlation: further. regime (ii) is “fine tuned” 
and “unnatural” in the sense that the required value of .\ is exponentially sensitive 
to the value of //mpi. 

Finally, I note that the results for regime (ii) apply to any inflationary model whose 
Taylor expansion in the inflationary region is similar: e.g.. V(m) = -m202+Xo’. which 
was originally analyzed in Ref. [i2]. 



3.2.5 Lessons 

~0 summarize the general features of our results. In all examples the deviari01:~ 
from scale invariance enhance perturbations on large scales. The only potentials that 
have significant deviations from scale invariance are either very steep or have rapldib~ 
changing steepness. In the former case. both the scalar and tensor perturbations are 
tilted by a similar amount: in the latter case. only the scalar perturbations are tilted. 

For “steep” potentials. the expansion rate is ~~slw.” i.e.. qso close to unity. the 
gravity-wave contribution to the CBR quadrupole anisotropy becomes comparable 
to. or greater than. that of density perturbations. and both scalar and tensor per- 
turbations are tilted significantly. For flat potentials. i.e.. small z5,,, the expansion 
rate is ,.fast.” i.e.. qso > 1. the gravity-wave contribution to the CBR quadrupole 
is much smaller than that of density perturbations. and unless the steepness of the 
potential changes significantly. large z;,,. both spectra very nearly scale invariant: 
if the steepness of the potential changes rapidly. the spectrum of scalar perturba- 
tions can be tilted significantly. The models that permit significant deviations from 
scale invariance involve exponential or low-order polynomial potentials: the former by 
virtue of their steepness. the latter by virtue of the rapid variation of their steepness. 
Exponential potentials are of interest because they arise in extended inflation models; 
poientials with rapidly steepness include V(m) = -m’o’ + Ad4 or A’[1 + cos($/j)]. 

Finally, to illustrate how observational data could used to determine the properties 
of the inflationary potential and test the consistency of the inflationary hypothesis, 
suppose observations determined the following: 

(AT), z 16pK: T/S = 0.2~: II = 0.9: (117) 

that is. the COBE DMR quadrupole anisotropy. a fwr to one ratio of scalar to 
tensor contribution to the CBR quadrupole. and spectral index of 0.9 for the scalar 
perturbations. From T/S. we determine the steepness of the potential: .zso 2 0.94. 
From the steepness and the quadrupole anisotropy the value of the potential: vi/’ z 
2.4 x 10’s GeV. From the spectral index the change in steepness: & z -O.dl/mPl. 
These data can also be expressed in terms of the value of the potential and its first 
two derivatives: 

v,, = 1.1 x lo-LLm PIT V’ = 1.5 X lo-L’mp,‘: so V$ = I.0 x 10-“mp12. (118) 

Further, they the lead to the prediction: RT = -0.035. which, when “measured.” can 
be used as a consistency check for inflation.. 

4 Structure Formation After COBE 

Filling in the details of structure formation is one of the Pressing challenges of the 
standard cosmology. In order to do so one must have the “initial data” for the 
structure formation problem: the spectrum of density perturbations and the quantity 
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and composition of matter in the Universe. kiith initial data in hand one can hope to 
carry out detailed numerical simulations which can be compared to the observar:or,s~- 
LVhile neither the observational data nor the simuiarions are perfect, the situation in 
both regards is Improving rapidly. In particular. the discovery of CBR anisotrop!~ h> 
the COBE DMR has provided the first direct evidence ior the existence of dens(t) 
perturbations and thereby opened the door for their study. 

Over the past decade or so many cosmologists have come to believe that required 
initial data trace to events that took piace during the earliest history of the [-nlverse 
(t << 10-‘set). Thus. the study of structure formation has the potential to test 
theories of the early Cniverse and the underlying particle physics. Inflation leads 
to two limiting scenarios: hot dark matter and cold dark matter. both with ;cale- 
invariant density perturbations. 

In the hot dark matter scenario the streaming of neutrinos from regions of higher 
density to lower density erases perturbations on small scales (5 13h-* Mpc): therefore 
structure forms from the the top down: superclusters must form first and fragment 
into smaller objects. Therein lies the fundamental problem: Since we know that 
superclusters are just forming today. galaxies form too late to be consistent with the 
abundance of galaxies observed at red shifts of unity or so [8-l]. 

Cold dark matter looks much more promising: cold dark matter refers to dark 
matter particles that move very’ slowly. either by virtue of their large mass (e.g.. 10 
GeV to 2 TeV neutralino) or the fact that they were born cold (loss eV axion). This 
means that perturbations on small scales are not erased and that structure forms 
from the bottom up. Cold dark matter has been subject to intense scrutiny over the 
past decade and has thus far survived, albeit with a number of scratches and bruises 
[85]. CDM models will be the focus of this Section. 

That is not to say that cold dark matter models are :he only promising possibil- 
ities. There are scenarios where the density perturbations arise due to topological 
(and nontopological) defects such as strings [30]. global monopoles, and textures 1311 
with hot or cold dark matter. Scenarios have been discussed where the density per- 
turbations arise in a rather recent phase transition (since decoupling!), due to new 
physics in the neutrino sector [32]. 

Finally. perhaps the most interesting alternative is Peebles’ PIE model or what- 
you-see-is-what-you-get model (291. In PIB Ro = Rg - 0.2. h - 0.8, and the density 
pe!turbations are isocurvature perturbations (variations in the local baryon-to-photon 
ratlo and not the energy density). PIB is not motivated by what early Universe theo- 
rists would like, rather by “what we see” (though it violates the primordial nucleosyn- 
thesis bound by large factor since R8h* z 0.13 Z% 0.02). Remarkably, the scenario is 
still viable, though measurements of CBR anisotropy on scales of 1” to 90” are really 
putting it to the test: normalizing to the COBE IO” measurement, its predictions for 

‘Since the fluctuations predicted by inflation and other theories are only specified in a statistical 
sense this comparison can only be done statistically: in the c=e of inflation. the fluctuations are 
gaussian and so all predictions can be specified in terms of the power spectrum, ()6tiZ). 
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the quadrupole are a factor of two small. while its predictions of scales of about hve 
degrees exceed current upper limits [86]. 

4.1 The Universe observed 

By now we know a lot-and a little-about the structure that exists in the Cni- 
verse today. .A resurgence of interest in structure formation. brought about in part 
by the very intriguing early Universe suggestions for initial data, has resulted in an 
explosion of observations that bear on the issue over the past decade. They include 
red-shift surveys (large-angle. pencil-beam and sparsely sampled surveys). the spec- 
trum and spatial variation of the CBR temper,ature. peculiar-velocity measurements. 
QSO absorption line systems. studies of clusters and superclusters, determinations of 
the distribution and quantity of dark matter. studies of galactic evolution, catalogues 
of millions of galaxies on the sky. and on and on. 

To place things in perspective. we know much about the distribution of light 
(bright galaxies)--as opposed to mass (which is what theorists like to discuss); the 
largest red-shift survey. the CfAs slices of the C:niverse. contains only about 20.000 
galaxies with median red shift of about 0.02 [ST]; and the total number of red shifts 
measured for all purposes is only about .50.000. We have no definitive evidence as 
to the epoch of galaxy formation, or how the neutral hydrogen left between galaxies 
became ionized (if it weren’t. it we would not be able to see emission from distant 
QSOs shortward of Lyman alpha, 1215a in the rest frame of the QSO). We probably 
only know the mean density of galaxies to within 20%: we have no fair sample of 
clusters; and so on. 

Let me briefly try to summarize some of the data that can be used to test models 
of structure formation. Within the spirit of my broad brush description, f will group 
the observations into three classes: Small-scale. observations that probe the Universe 
on scales less than order :3Oh-’ ,Mpc or so; Intermediate-scale, observations that probe 
the Universe on scales of 30h-’ Mpc-300h-’ Mpc or so: and Large-scale, observations 
that probe the Universe on the very largest scales accessible.* 

l Small-scale Structure (A s 30/r-’ !vlpc): Our knowledge of these scales is the 
most extensive and well developed. though largely restricted to the distribution 
of bright galaxies like our own. These are also the scales on which astrophysical 
effeots-star formation, blast waves. and so on-are potentially most important 
and poorly understood. The Universe on these scales is organized into galaxies 
and clusters, whose properties have been studied and quantified; for galaxies. 
number density and morphology-i.e.. spiral. elliptical, etc.-rotation curves, 
and so on; and for clusters, number density. velocity dispersions, richness class. 

dI warn the reader that my nomenclature is not universal; many refer to what I call intermediate 

scales a¶ large scales. 



and so on. Both galaxies and clusters cluster. tcith measured :rvo.po,nt r:or~ 
relation functions Eg61,r) 2 ~r/.jh-’ \lpC)-‘8 and fCCIr~ > tr,~jh-'\lpcs-", 

though the cluster correlation function is less wil known and depends :~po,n 
cluster richness (&3. -\t some level we know the distribution of dark matter: 
spiral galaxies have large halos with unknown spatial extent and the bulk of the 
mass in clusters is dark [li]. LVe also know the pairwise galaxy velocity disper- 
sion (line-of-sight velocity dispersion). (( ct - ~.r)~~“~~t~~t~~ 2 300 - 400 km 5-l 
[Y9]. (As discussed earlier. the peculiar motions of galaxies depend upon the 
amplitude of density perturbations and the amount of matter in the I..niverse. 
and thus are indicative of such.) On scales less than about t3h-’ .Ifpc the Cni- 
verse is nonlinear: specifically. the rms fluctuation in the number density of 
bright galaxies measured in a sphere of radius of 3h-’ Mpc is unity. 

s Intermediate-scale Structure (30h-’ Mpc - :?OOh-’ Mpc): These are the 
scales on which our knowledge is the most fragmentary and often more qualita- 
tive than quantitative.’ Observations include the the voids and ..Great LC’all” 
seen in the Cf.42 red shift survey: the reoccurring walls seen in the pencil-beam 
survey of Broadhurst et al. (901: the angular-correlation function of gaiaxies 
w(B). which is related to tgg(r). measured by Efstathiou et al. [91] in the ;\PM 
catalogue of 2 million galaxies on the sky (effective depth of 400h-’ Mpc); the 
peculiar velocities of galaxies measured by the Seven Samurai and others [92], 
about 400 kms-’ on the scale of 5Oh-l .\fpc: Great .Attractors. and on and on. 
From red-shift surveys like the CfAs slices of the I.niverse. the IRAS 1.2 Jy sur- 
vey of infrared-selected galaxies 1931. and the APKStromlo 1 in 20 red-shift sur- 
vey (941. the fluctuations in the galaxy number density have been measured on 
scales out to a few hundred Mpc: see Fig. I la. By the year 2000 the Sloan Digi- 
tal Sky Survey [95] will produce a “Map of the Universe.” from the red shifts of a 
million galaxies (mean red shift of about 0.13 and survey depth of SOOh-* UPC). 
With the exception of the peculiar.velocitp measurements all these observations 
probe the distribution of light not mass. CBR anisotropy measurements on an- 
gular scales of a few degrees down to a few arcminutes also have the potential 
to probe the distribution of matter on these scales. as the CBR anisotropy on 
a given angular scale is related to the fluctuations in the mass density on a 
ranges of length scales around the characteristic length scale that subtends that 
angular size on the last scattering surface: .\ Q 100/r-’ .Mpc(B/deg). Very sen- 
sitive experiments are being done on these angular scales; with the important 
exception of the COBE DMR detection. there are now only upper limits. at the 
level of a few times 10-s; see Fig. :1. I believe that more detections are just 
around the corner! 

s Large-scale Structure (2 300h +’ Mpc): These scales are probed primarily 

‘1 often call these the NY Ttmes scales. a new observations and their extravagant interpretation 

are repotted there almost weekly! 
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by CBR anisotropy. though the Sloan Digital Sky Survey should proitde some 
information about the distribution of galaxies on these scales. On angular ~a,ies 
much greater than about I” the anisotropy arises due to :he fluctuarlons :n ;he 
gravitational potential on the last-scattering surface I Sachs-IVolfe rrfecr I. \s!llie 
on small-angular scales the situation is more complicated bs the veloc~ry uf the 
matter. temperature fluctuations intrinsic to the radiation. and the ionizatlo,n 

history of the Cniverse become important. On large-angular scales it 15 verb 
simple to relate the C’BR anisotropy to the ..virgin spectrum” of densir!. flue. 
tuations. It is these scales that were probed bv rhe COBE D.L[R detecrlon, 
proving the first direct information about the ex:stence of the densit! inhomo. 
geneity chat seeded structure formation. 

4.1.1 Normalization: the great leap forward! 

Lacking a definite prediction for the overall normalization for inflationary densit! 
perturbations. those who study formation of structure have historically used data on 
small-scales to normalize the spectrum of density perturbations. typically on the scale 
of $h-’ Mpc. In so doing it is useful to define 

which is the rms mass fluctuation in spheres of radius dh-’ Mpc. The simplest (and 
most naive) procedure is to assume that light faithfully traces mass, i.e.. Sp/p = 
~~GAL/~GAL, and set us = 1 since the rms fluctuation in galaxy number in spheres 
of radius ah-’ Mpc is unity: I will refer to this minimal cold dark matter (.LICD.\l). 
I stiould remark that there is no a priori reason to expect light to trace mess. except 
on the very largest scales where only gravity is importanr. 

Because this normalization leads to a galaxy pairwise velocity dispersion that is 
about a factor of two too large, the concept of “biasing” was introduced: namely. that 
Light is a biased tracer of mass [96]. If light doesn’t trace mass. the simplest ansat: 
is a linear factor between the two: 

~~GAL/~GAL = b(~plP). ( 1’20) 

Of course there is every reason to expect that the real relationship is more compli- 
cated. 6 = b(A). In biased CDM models (BCD.M). r~s = b-‘. In principle. the bias 
factor b(X) can be measured on scales where there is information about both the 
distribution of galaxies and of mass. cf. Fig. I 1. 

Until the COBE DMR detection, a bias factor to 1.i to 2 wu in vogue to resolve 
the discrepancy in the galaxy pairwise velocity dispersion: 6 5 1.5 - 2 was known as 
the standard CDM model. Since the peculiar velocities of galaxies arise due tcI the 
lumpy distribution of matter: larger b implies a,smoother mas distribution and thus 
smaller peculiar velocities. (Likewise. reducing the matter content. or R,,, can help.) 
Unfortunately, the predictions of BCDM on intermediate-scales could not account for 
the level of inhomogeneity seen-voids. galaxy-galaxy angular-correlation function. 
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Figure 11: Summary of observation4 knowledge of the power spectrum $11’ based 
upon the IRAS 1.2 Jy red shift survey and CBR anisotropy measurements (from [93]). 
,ACME-HEMT indicates the South Pole experiment that has detected anisotropy that 
may or may not be intrinsic to the CBR. 
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pecuhar velocities. and so on-since the mass distribution was smoother. Thus. CD.\1 
W= faulted for predictin; too little pour on ,.!arge scales” ‘III mv nomenclature. 
intermediate scales). 

[.another motivation for bias is the so-called fl problem: \Vhy do the d!,namicai 
measurements indicate I?0 = 0.2. if 00 is really unit!? The biasing explanation is 
that most of the mass in the Cniverse is in low surface-brightness galaxies that are 
too faint to see and that are less strongly clustered than the bright galaxies, Bright 
galaxies are more strongly clustered and account for only ‘20% of the mass denslry.] 

The COBE DMR detection of CBR anisotropy changed the situation overnight 
by providing a new. more direct normalization of the density perturbations! ,&sum- 
lng the correctness of the result. we now have a measurement of the inhomogeneicy 
in the mass distribution on large-scales-and at last a “physics normalization.” Re- 
markably. the COBE normalization (with scale-invariant perturbations) corresponds 
to the simplest CDM model: ba = I.? dcO.2 (97]. i.e.. no biasing.“’ 

The COBE DMR normalization has changed the way we view inflation and struc- 
ture formation: Intermediate and large) scales seem to be OK: the problem is with 
small scales. .Addressing this problem is the focus of the brief discussion of CD\1 
models that follows. 

4.2 CDM models 

The initial data for structure formation include: (i) spectrum of primeval density 
perturbations-amplitude on a given scaie (normalization) and spectral index n: (ii) 
composition of the Universe--Ri, i = batyons. cold dark matter, hot dark matter, 
vacuum energy and so on: and (iii) Hubble constant which sets the time/length scale 
for the Universe. With these in hand one can compute the spectrum of density 
perturbations at the equivalence epoch and let gravity run its course. Of course. 
astrophysics-cooling of baryons. star formation. etc.-is important too. but more 
difficult to model. Progress here too is being made with large iv-body codes that 
include both gravity and hydrodynamics for the baryons [98]. The list of wanted 
cosmological parameters for a numerical simulation is: 63 (in the simple biasing 
prescription os = b-l), n, Rg, Rorkr, and h. 

What predictions does inflation make for these parameters’? The firmest is a flat 
Universe, in my notation Do = 1 .O. which implies nonbaryonic dark matter dominates. 
As mentioned earlier, hot dark matter (:30eV or so neutrinos) was ruled out early 
on; and so the cold dark matter scenario’nppeand to be the unique inflationary 
blueprint for structure formation [99]. Let me explain: to get the age of the Cniverse 
right we must have h - 0.5. This fact together with the primordial nucleosynthesis 
determination of RBh* implies Rs 2: 0.04 - 0.10. In most inflationary models the 
density perturbations are very nearly scale invariant. implying n = 1. Finally, the 

“For HDM the COBE DMR normalization implies gd = 0.7. ThL drives another naiI in the 

coffin, M it implies that only about 1% of the material in the Universe is in nonlinear structures. 
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Figure 12: MCD.LI vs. observation 

variance in galaxy counts on dh-’ .Mpc suggests os = L. This is the minimal cold 
dark matter model (MCDM): it is certainly the simplest CDM scenario, though it is 
no Longer the unique CD.M model. 

Partly due to problems with MCDM. partly due to the improvement in the ob- 
servations that test models of structure formatton. and partly due to the passage of 
time we now realize that there are other possibilities. some just as well motivated. 
some less well motivated. I will characterize the different models by their values for 
the key cosmological parameters for structure formation: vs, n. &her. h, and Rg, 

4.2.1 MCDM 

This is the simplest and the original CDM model: it is characterized by b = 1, n = 1, 
l-l orhu = l-l& 2: 0.9, Rg - 0.1, and h = 0.5. It is consistent with the COBE 
DMR data, which for n = 1 imply us = 1.2 zb 0.2. and intermediate-scale structure. 
However, it has too much power on small scales. quantified by a galaxy-pairwise 
velocity dispersion of about 1000 kms-’ compared to the observed 400 kms-t. .A 
comparison of MCDM power spectrum with the observations is shown in Fig. 12. 

Since .CICDM is the simplest and most well motivated model perhaps inflationists 
should sit tight and wait for the data (or their interpretations) to change. After 
all. the disagreement is on small scales where the Universe is highly nonlinear and 
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astrophysics can play an important role. 

4.2.2 BCDM 

This is the CD41 model with biasing. imposed to soli-e the problem oi roe much 
power on small scales. The parameters of this model are: b * 1.i - 1. )I = I. 
%her = %oid - 0.9. Rs - 0.1. and h = 0.5. This model is disfavor for t:vo reasons: 
I I I The COBE DIfR results imply b = O,A *O:?: and ( _‘i 1 apparent) insufficient po~et 
on intermediate scales to account for peculiar yelocities. the galaxy-gala:!, angular 
correlation function. etc. However. one should keep in mind that the COBE D\IR 
results are new and may still change. and that our knowledge of intermediate scales 
1s the least secure. Perhaps the truth is somewhere in between LfCDht and BCDLL: 
both are well motivated. Shifting the MCD!vI power spectrum in Fig. 12 downward 
by a factor of 2 - .I corresponds to os - 0.5 - 0.7. 

4.2.3 Tilt 

Tilted CD.M (TCDM) models are characterized by: bs - 0.5, R - 0.8. RolhL, = 
R cold - 0.9. RB - 0.1. and h = 0.5 [loo]. From the beginning it was realized that 
the inflationary perturbations were not precisely scale-invariant, typically with more 
power on large scales (n < 1) [72], and so tilted models too are well motivated. 
Relative to scale-invariant perturbations (R = 1) the density perturbation in a tilted 
model is 

(CJ x (ig=, A"-"':! (121) 

The COBE DMR result provides a normalization on very large scales. X - 10’ Mpc: 
relative to MCD!vl. the density perturbations on intermediate scales. X - ,300 Mpc. 
are only a factor of about 1.4 smaller. while on small scales. X - IO.Mpc. they are 
about a factor of 2 smaller: see Fig. 1:3a. 

If tilt is the truth, two kinds of inflationary potentials are singled out: exponen- 
tial and low-order polynomial potentials [lOI], Further. for exponential potentials. 
the contribution of gravity waves to the CBR anisotropy on Large-angular scales is 
significant, which lowers the overall normalization of density perturbations further. 
by a factor of (1 + r/S)t” [12]. 

4.2.4 Best& models 

These models address the problem of too much small-scale power by changing the 
transfer function. The models considered thus far are: cold dark matter with a 
cosmological constant (.\CDM), n = 1, fly - 0.05. &otd -. 0.15, fin - 0.8. and 
h - 0.8 [102]; and mixed dark matter (MD&l)-,.the neutrino cocktail--“n = 1. 
fle - 0.1. f&old - 0.6, h = 0.5. and Rkoc - 0.3. corresponding to a 7eV or so mass 
neutrino (1031. 
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How is the transfer function changed’? It is simplest to see in .LID\I: since part ,>i 
the dark matter is in the form of neutrinos which freescream out of density tl~c:uar~oni 
on small scales, perturbations on small scales are depressed (see Fig. 91. just ,.~har 
the doctor ordered. In .\CDM the story is a little more complicated: the bend in 
the transfer function is set hy the scale that crosses inside the horizon at matrer- 
radiation equality. ~EQ * O..j(fl,,,.,h’) Xlpc. where R,,,,,, = RB t Ocaid z 0.2. 
Relative to .\ICDXl. ~EQ is a factor of two smaller. shifting the spectrum to Jmaiier 
k and decreasing power on small scales (see Fig. 9). 

[The .\CDM model. Lvhich I once called “the best-fit cniverse.” has a number of 
other nice features. It automatically solves the R problem since 33% of the energ! 
density is in vacuum energ! which is uniformly distributed and thus does not ,.show 
up” in dynamical measurements of the mass density. It allows one to accommodate 
the higher values of the Hubble constant which are favored by many measurements. 
Likewise. blDM also address the 52 problem: there is not enough phase space in 
galaxies for neutrinos to account for halo masses: further. neutrinos probably move to 
fast to be captured even in clusters. This would explain why dynamical measurements 
of R. based on galactic rot&on curves or cluster virial masses do not lead to values 
of R0 close to unity.] 

Because both .\CD1I and, 1lDM have less power on small scales than .CICDM, 
when normalized to the COBE DMR result. thev are a much better fit to the small 
scale data, and on large scales they are very similar to !vfCDM. They fit’ the present 
data very well; see Fig 13b. One should. however. recall the words of Francis Crick 
(of DNA fame); loosely quoted, 

A theory that agrees with all of the data at any given time is necessarily 
wrong, since at any given time some of the data are incorrect. 

The weak point of the ..hest-tit models” is motivation: however. let me try to make 
the best case for each. .\CDM: X cosmological constant that contributes an energy 
density of about 10-“sGeV’ would be very surprising. Since there is no physical 
mechanism known that explains why the present vacuum energy isn’t of order mpl’ 
(perhaps with the help of supersymmetry only of order C,‘). one cannot rigorously 
say that pvu 2- 10-‘s GeV’ is be fine-tuned in the technical sense. UDM: Cold dark 
matter has so many good features that it must be part of the truth: neutrinos exist- 
in three varieties--and the see-saw mechanism suggests nondegenerate masses in “the 
eV range” (meaning lo-seV to tens of e,V). it could well be that one of the three 
neutrinos bar a mass of order 10 eV. 

Certainly neither case for motivation is strong. Why is the cosmological con- 
stant just today becoming dynamically significant (recall. pvsc/pnurrer x R’)‘? And if 
history is any guide. cosmologists beginning with Einstein have too often invoked a 
cosmological constant to solve their problems. For .LIDM. one has to posit two kinds 
of nonbaryonic dark matter that each contribute comparably to the energy density of 
the Universe. If nonbaryonic dark matter exists it is already puzzling that baryons 
and dark matter each contribute similar amounts to the mass density 1104). 



4.3 The scorecard and future 

LC’hereas cosmologists used to talk about ,-the CD>1 modei” and :ts ..,~ln:‘l:>e:er;s” 
words that were once used LO describe the superstring’. r&e 1s now a menu at’ CD.\1 

models. How do they stand. and which measurements can discriminate between 
them! In discuss&; their models. it is often said that theor:sts have mani- hands: (on 
the one hand. on rhe other hand. on the other other harzd nnd so on, Let me ::I.’ rm 
hand at it 

&cam‘s razor points :o the simplest model. >ICD\I. lloreover. :t \<a~ I. :::,il,-nrrd 
by COBE and only differs from the observational data hy n factor of two ur 50 on 
small scales where compilcared astrophysics can be verb’ important. Perhaps theorist; 
should sit tight and wait On the other hand ihere we go’. biasing at some le\~el 1s 
likely to be a fact of life. arcuing for BCDXI: BCDXI resolves the small-scale problems 
of CD!vI. but COBE indicates that 5 * I. IIaybe the truth is somewhere in between 
.\ICD11 and BCD\L: the C’OBE normalization could come down a bit. making 6 - I..1 
or so viable. 

On the other other hand. deviation from scale-invariance was in the cards from 
the beginning. and so TCD.Ll is well motivated too. !Joreover. the tilt required 
points to .a smaller class of inflacionarl; models. exponential potentiais and iow-order 
polynomial potentials. which can be dlscrlmlnated between by the size of their tensor 
perturbations. 

On my final hands are the best-fit models. .\CD!vI and .LIDM. They are not as 
well motivated, but agree better with the data at hant:~ Of the two, my first final 
hand has to go to blDX1. and my second Final hand to .\CDM. 

There will be a variety of observations that can useti 10 discriminate between the 
different CDU models: I will focus on C’BR measurements on the 0.5’ - 2” scale. as 
there are several experiments with the sensitivity to probe CDM models which will 
be announcing results soon [105]. These experiments add roughly another order of 
magnitude to the range of scales probed by CBR anisotropy ~recail. COBE probes 
10” to 90”). For reference. the .LICD.CI prediction for this anguiar scale is 6T,‘T c 
I - 2 x IO-‘: the current upper limits are just above this level! Let me describe 
possible outcomes. 

Scenarw I: The upper limits become detections. .LlCD!vI. .\CD>I. and UDXl are 
in;‘TCDM and BCDM are out. 

Scenario 2: Detections are announced below the 10-s level. BCD%l and TCDM 
are in; the rdst are out. If the detections are much below the 10-s level. exponential 
potentials are strongly favored as in these tilted models much of the COBE signal is 
due to tensor perturbations whose contribution to CBR anisotropy falls dramatically 
around a few degrees [i9. 12. 1061. 

Finally. let me mention a very different test. the value of the Hubble constant. 
Suppose all parties agree on the currently popular value h = 0.8: all CD)1 models 
except ACDM fall by the way side. based on the age of the Universe. Conversely. 
suppose that evidence for h = 0.5 becomes overwhelming: .\CDM is out. 
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5 Concluding Remarks 

inflation is an extremely attractive cosmological paradigm: in spite--no. because-,,i 
INS beauty it must be put LO the ultimate test: confrontation :vith obseri.at:on, [n 
resting inflation one must focus on its robust predictions: In order of robustness. 
spatially flat Cniverse iRo = 1); very nearly scale-invariant spectrum of density per- 
turbations: and nearly scaie-invariant spectrum of gravitational waves. In addition. 
lor tirst-order inflation there should be a .‘spike” in the stochastic background of grav- 
itational waves of very significant energy density 0.c~ - lo-’ or so. at a frequent! 
f- 10’ Hz(,M/lOLo CeL’) ‘571. It is also possible that fluctuations in other fields 
lead to primeval magnetic helds [lo;] or isocurvature perturbations (e.g.. in axions 
or baryons) [69]. 

There are a variety of means of testing these predictions. For example. there are 
kinematic and dynamic techniques for measuring Do. The density perturbations lead 
to temperature fluctuations in rhe CBR. The tensor (gravity-wave) perturbations 
also lead to CBR anisotropies. or may he detected directly by the next generation 
of gravity wave detectors. Laser Interferometric Gravity-wave Observatories ! LIGOs) 
jlO8]. 

From the “primary predictions.” a series of secondary predictions follow. For ex- 
ample. since primordial nucleosynthesis restricts Rs 5 0.1. nonbaryonic dark matter 
is a necessity, and a host of experiments are under way to search for nonbaryonic 
dark matter [log]. In a flat. matter-dominated L’niverse Hoto = f or to z 6.5h-’ Cyr. 
which implies that h must be greater than 0.65 to ensure that the Cniverse is older 
than 10 Gyr (the absolute minimum age that is consistent with other measures of 
the age of the Universe). The spectrum of density perturbations, together with the 
matter content, provide the initial data for the structure formation problem, leading 
to another test. 

In the near term I believe that structure formation will provide the most powerful 
test of inflation and probe of inflationary models. On balance, the inflation-inspired 
CDM models are doing quite well so far compared to the alternatives: Texture and 
cosmic-string models required a high level of biasing (b w :3) to be compatible with 
COBE DXIR results: and PIB not only strongly violates the primordial nucleosynthe- 
sis constraint to RB but also seems to be inconsistent with CBR anisotropy bounds 
on the scale of five degrees [86]. G reat efforts are being made to further test the CDV 
scenarios, and involve many different techniques. C’BR anisotropy. red-shift surveys. 
peculiar velocity measurements. and so on. These observations not only have the 
power to falsify CDM, but could also reveal much about the inflationary potential: 
the value of the potential, its steepness. and the change in steepness. which in turn 
can used to learn about the underlying model. For example. suppose that density 
perturbations do deviate significantly from scale invariance. then two classes of mod- 
els are ruled out-chaotic and new inflationt-and two types of models are ruled 
in-exponential potentials (as found in extended inflation) or low-order polynomial 
potentials (as found in natural inflation). The ratio of tensor to scalar perturba- 
tions can further narrow the field: large tensor contribution to the CBR quadrupole 
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points to exponential potentials and small-tensor contribution points LO ;O;V-firtier 
polynomial potentials. 

The moment of truth ior inflation mai be near! 

This wrk ‘was supported 12 parr hy the DOE iat C!~;cago and Fermilab and 5) :.ie 
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